镜检白细胞是什么意思| 太子是什么生肖| 产后恶露吃什么排干净| 金丝檀木是什么木| 一岁宝宝口臭是什么原因引起的| 什么树叶| 彩礼是什么意思| 八月二号是什么星座| 昆明是什么城| 什么是换手率| hr是什么意思| 去医院看舌头挂什么科| 什么样的女人招人嫉妒| 久坐睾丸疼是什么原因| 小肠换气什么症状| 我做错了什么| 牙齿打桩是什么意思| 三天不打上房揭瓦的下一句是什么| 高铁上不能带什么| 多囊性改变是什么意思| bra是什么| 吕布的坐骑是什么| 膝盖有积液是什么症状| 云南有什么名酒| 怀孕两天会有什么反应| 挚友什么意思| 为什么出汗特别多| 早熟是什么意思| pro是什么氨基酸| 淋巴门结构可见是什么意思| 先兆性流产是什么症状| 检察长是什么级别| 小孩腰疼是什么原因| 怀孕了尿液是什么颜色| 失眠为什么开奥氮平片| 什么是数位板| 洗葡萄用什么洗最干净| 角膜炎吃什么消炎药| 成吉思汗和忽必烈是什么关系| 1978年属什么的| 3月29日是什么星座| 浑身酸痛什么原因| a血型和o血型生出宝宝是什么血型| 一什么所什么| 左卵巢内囊性结构什么意思| 脑梗病人吃什么营养恢复最好| 人突然瘦了要检查什么| 做梦掉粪坑什么征兆| 蜥蜴什么动物| 拍身份证照片穿什么颜色衣服好看| 红茶什么季节喝最好| 开光什么意思| 吃什么受孕率又快又高| 是什么药| 小腿有血栓是什么症状| shy是什么意思| 脑梗什么原因导致的| bkg是什么意思| 神经病吃什么药效果好| 吃避孕药不能吃什么东西| 黄酮是什么| 放是什么偏旁| 指甲黑是什么原因| 血糖高会有什么症状| 房间朝向什么方向最好| 肚子大是什么原因造成的| 排卵试纸什么时候测最准确| 皮肤黄是什么原因引起的| 夕阳是什么时候| 九条鱼代表什么意思| 夹腿是什么意思| 贫血看什么科| 核糖体由什么组成| 细菌性阴道炎有什么症状| 二氧化碳有什么作用| 望眼欲穿是什么意思| 聿字五行属什么| 重磅是什么意思| 现在什么星座| 金蝉吃什么| 左手小指和无名指发麻是什么原因| 胎儿偏小吃什么补得快| 小腹胀胀的是什么原因| 妇科假丝酵母菌是什么病| 精华液是干什么用的| 猪肚搭配什么煲汤最好| ckd5期是什么意思| 脂血是什么意思| 食指戴戒指代表什么| 类风湿因子高吃什么药| 脑供血不足用什么药好| 腿肿是什么原因引起的| 迫切是什么意思| 符号叫什么| 儿女情长英雄气短是什么意思| 10月11是什么星座| 破伤风有什么症状| 398是什么意思| 淋巴结肿大是什么原因引起的| 款式是什么意思| 指什么| 蜂蜜和柠檬一起喝有什么作用| 子宫肌瘤吃什么药好| ryan是什么意思| 傲慢表情是什么意思| 破伤风是什么症状| 冰粉籽是什么植物| 激素六项都是查什么| 小肠镜什么情况下需要做| 尿道感染要吃什么药| 山竹有什么功效| 打点是什么意思| 罗汉果泡水有什么好处| 你有一双会说话的眼睛是什么歌| 激光脱毛对人体有没有什么危害| 肠鸣是什么原因| 慢性萎缩性胃炎是什么意思| 阳上人是什么意思| 巨蟹座和什么座最配| 手汗多是什么原因| 怀孕白细胞高是什么原因| 避孕套什么牌子的好| zs是什么意思| 婴儿湿疹用什么药膏最有效| 备孕吃什么叶酸| 下压高是什么原因引起的| 发烧一直不退是什么原因| 皮肤晒伤用什么药| 肌肉酸痛用什么膏药| 羊水栓塞是什么原因引起的| 六块钱麻辣烫什么意思| 澳门是什么时候被葡萄牙占领的| 圣诞是什么意思| 噤口痢是什么意思| 十一月十一号是什么星座| 过期啤酒有什么用途| 血小板减少会出现什么症状| 什么学步| 做颈动脉彩超挂什么科| 贲门松弛吃什么药| 水晶粉是什么粉| 客厅沙发后面墙上挂什么画好| 李商隐被称为什么| 92是什么| 脂蛋白高是什么意思| 支气管炎哮喘吃什么药| 玥是什么意思| 视网膜脱落是什么原因引起的| 戾气重是什么意思| 长期喝咖啡有什么危害| 买李世民是什么生肖| bosco是什么意思| 什么是慢性病| 教唆什么意思| fda是什么| 流金铄石是什么意思| audrey是什么意思| alcon是什么牌子| ppi是什么| 2.22是什么星座| 女人梦到地震预示什么| 辅警政审主要审些什么| 治甲沟炎用什么药膏好| 真丝乔其纱是什么面料| darling什么意思| 献殷勤是什么意思| 口里有异味是什么原因| 明虾是什么虾| 多囊卵巢综合征是什么意思| 女人脸肿是什么原因引起的| 河粉是什么做的| 梅毒挂什么科| c是什么| 富勒烯是什么| 智五行属性是什么| 食管有烧灼感什么原因| 管状腺瘤是什么病| 什么东西解酒最好最快| 打夜针是什么意思| 腿上起水泡是什么原因| 孕前检查什么时候去最合适| 先兆性流产是什么意思| 半什么半什么| 尿酸偏低是什么原因| 肉桂是什么东西| 孕妇梦见大蟒蛇是什么意思| 头孢和什么药不能一起吃| mankind是什么意思| svip是什么意思| 女人性冷淡是什么原因| 血小板减少有什么症状| 京ag6是什么意思| 明年属相是什么生肖| 孕妇白细胞高是什么原因| 肝火旺吃什么药| 口苦口干是什么原因造成的| phoebe是什么意思| 大黄是什么药| 月老叫什么名字| 过敏性紫癜什么症状| 对什么都不感兴趣| 柠檬片泡水喝有什么功效和作用| 1947年属什么| 皮肤炎症用什么药| 安溪铁观音属于什么茶| 吃冬瓜有什么好处| 命运多折 什么生肖| 制片人是什么意思| 狐臭是什么引起的| 伤口发炎吃什么消炎药| 气管小憩室是什么意思| 红红的苹果像什么句子| 梦见下雪了是什么意思| 垂体分泌什么激素| 什么快递可以寄宠物| gigi 是什么意思| 阻力是什么意思| 湿疹是什么样子| 人为什么会缺钾| 月经期吃什么| 高硼硅玻璃是什么材质| 什么头什么面| 黑枸杞和什么一起泡水喝比较好| 间奏是什么意思| 1989年出生的是什么命| 北芪与黄芪有什么区别| 左右逢源是什么生肖| 夏天适合吃什么水果| 器质性心脏病是什么意思| 嗓子有异物感吃什么药| hr是什么品牌| 外婆的弟弟叫什么| 刺青是什么| 作灶是什么意思| 什么猫不掉毛| 圻字五行属什么| 丑时是什么命| 1.17是什么星座| 心脑血管疾病吃什么药| 出柜是什么意思| mono是什么意思| 赭色是什么颜色| 10月出生的是什么星座| 皮粉色是什么颜色| 女性做结扎手术对身体有什么危害| 小白和兽神什么关系| 海水倒灌是什么意思| OK镜适合什么年龄| 1995年五行属什么| 病毒长什么样子| 下面老是痒是什么原因| 狸子是什么动物| 肝胆胰脾挂什么科| 秀才相当于现在的什么学历| 三昧什么意思| 舌头发白是什么情况| 脖子为什么有颈纹| 1978年什么命| un读什么| 宾字五行属什么| 女孩子喜欢什么礼物| 赫依病是什么病| 尿少是什么原因| 鸡米头是什么| 百度

独家|逾120家第三方支付加入银联网络 尚不含支付宝

(Redirected from Gaussian process regression)
百度 春节假期已经结束,期间济南住宅与房地产信息网显示这几天的从网签数据均为零,虽然2月份的房地产市场成交数据还没有确切的数据统计,但是从节前以及目前的数据来看,2月份济南房地产市场表现平淡。

In statistics, originally in geostatistics, kriging or Kriging (/?kri?ɡ??/), also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations.[1] Interpolating methods based on other criteria such as smoothness (e.g., smoothing spline) may not yield the BLUP. The method is widely used in the domain of spatial analysis and computer experiments. The technique is also known as Wiener–Kolmogorov prediction, after Norbert Wiener and Andrey Kolmogorov.

Example of one-dimensional data interpolation by kriging, with credible intervals. Squares indicate the location of the data. The kriging interpolation, shown in red, runs along the means of the normally distributed credible intervals shown in gray. The dashed curve shows a spline that is smooth, but departs significantly from the expected values given by those means.

The theoretical basis for the method was developed by the French mathematician Georges Matheron in 1960, based on the master's thesis of Danie G. Krige, the pioneering plotter of distance-weighted average gold grades at the Witwatersrand reef complex in South Africa. Krige sought to estimate the most likely distribution of gold based on samples from a few boreholes. The English verb is to krige, and the most common noun is kriging. The word is sometimes capitalized as Kriging in the literature.

Though computationally intensive in its basic formulation, kriging can be scaled to larger problems using various approximation methods.

Main principles

edit
edit

Kriging predicts the value of a function at a given point by computing a weighted average of the known values of the function in the neighborhood of the point. The method is closely related to regression analysis. Both theories derive a best linear unbiased estimator based on assumptions on covariances, make use of Gauss–Markov theorem to prove independence of the estimate and error, and use very similar formulae. Even so, they are useful in different frameworks: kriging is made for estimation of a single realization of a random field, while regression models are based on multiple observations of a multivariate data set.

The kriging estimation may also be seen as a spline in a reproducing kernel Hilbert space, with the reproducing kernel given by the covariance function.[2] The difference with the classical kriging approach is provided by the interpretation: while the spline is motivated by a minimum-norm interpolation based on a Hilbert-space structure, kriging is motivated by an expected squared prediction error based on a stochastic model.

Kriging with polynomial trend surfaces is mathematically identical to generalized least squares polynomial curve fitting.

Kriging can also be understood as a form of Bayesian optimization.[3] Kriging starts with a prior distribution over functions. This prior takes the form of a Gaussian process:   samples from a function will be normally distributed, where the covariance between any two samples is the covariance function (or kernel) of the Gaussian process evaluated at the spatial location of two points. A set of values is then observed, each value associated with a spatial location. Now, a new value can be predicted at any new spatial location by combining the Gaussian prior with a Gaussian likelihood function for each of the observed values. The resulting posterior distribution is also Gaussian, with a mean and covariance that can be simply computed from the observed values, their variance, and the kernel matrix derived from the prior.

Geostatistical estimator

edit

In geostatistical models, sampled data are interpreted as the result of a random process. The fact that these models incorporate uncertainty in their conceptualization does not mean that the phenomenon – the forest, the aquifer, the mineral deposit – has resulted from a random process, but rather it allows one to build a methodological basis for the spatial inference of quantities in unobserved locations and to quantify the uncertainty associated with the estimator.

A stochastic process is, in the context of this model, simply a way to approach the set of data collected from the samples. The first step in geostatistical modulation is to create a random process that best describes the set of observed data.

A value from location   (generic denomination of a set of geographic coordinates) is interpreted as a realization   of the random variable  . In the space  , where the set of samples is dispersed, there are   realizations of the random variables  , correlated between themselves.

The set of random variables constitutes a random function, of which only one realization is known – the set   of observed data. With only one realization of each random variable, it's theoretically impossible to determine any statistical parameter of the individual variables or the function. The proposed solution in the geostatistical formalism consists in assuming various degrees of stationarity in the random function, in order to make the inference of some statistic values possible.

For instance, if one assumes, based on the homogeneity of samples in area   where the variable is distributed, the hypothesis that the first moment is stationary (i.e. all random variables have the same mean), then one is assuming that the mean can be estimated by the arithmetic mean of sampled values.

The hypothesis of stationarity related to the second moment is defined in the following way: the correlation between two random variables solely depends on the spatial distance between them and is independent of their location. Thus if   and  , then:

 
 

For simplicity, we define   and  .

This hypothesis allows one to infer those two measures – the variogram and the covariogram:

 
 

where:

 ;
  denotes the set of pairs of observations   such that  , and   is the number of pairs in the set.

In this set,   and   denote the same element. Generally an "approximate distance"   is used, implemented using a certain tolerance.

Linear estimation

edit

Spatial inference, or estimation, of a quantity  , at an unobserved location  , is calculated from a linear combination of the observed values   and weights  :

 

The weights   are intended to summarize two extremely important procedures in a spatial inference process:

  • reflect the structural "proximity" of samples to the estimation location  ;
  • at the same time, they should have a desegregation effect, in order to avoid bias caused by eventual sample clusters.

When calculating the weights  , there are two objectives in the geostatistical formalism: unbias and minimal variance of estimation.

If the cloud of real values   is plotted against the estimated values  , the criterion for global unbias, intrinsic stationarity or wide sense stationarity of the field, implies that the mean of the estimations must be equal to mean of the real values.

The second criterion says that the mean of the squared deviations   must be minimal, which means that when the cloud of estimated values versus the cloud real values is more disperse, the estimator is more imprecise.

Methods

edit

Depending on the stochastic properties of the random field and the various degrees of stationarity assumed, different methods for calculating the weights can be deduced, i.e. different types of kriging apply. Classical methods are:

  • Ordinary kriging assumes constant unknown mean only over the search neighborhood of  .
  • Simple kriging assumes stationarity of the first moment over the entire domain with a known mean:  , where   is the known mean.
  • Universal kriging assumes a general polynomial trend model, such as linear trend model  .
  • IRFk-kriging assumes   to be an unknown polynomial in  .
  • Indicator kriging uses indicator functions instead of the process itself, in order to estimate transition probabilities.
    • Multiple-indicator kriging is a version of indicator kriging working with a family of indicators. Initially, MIK showed considerable promise as a new method that could more accurately estimate overall global mineral deposit concentrations or grades. However, these benefits have been outweighed by other inherent problems of practicality in modelling due to the inherently large block sizes used and also the lack of mining scale resolution. Conditional simulation is fast, becoming the accepted replacement technique in this case.[citation needed]
  • Disjunctive kriging is a nonlinear generalisation of kriging.
  • Log-normal kriging interpolates positive data by means of logarithms.
  • Latent kriging assumes the various krigings on the latent level (second stage) of the nonlinear mixed-effects model to produce a spatial functional prediction.[4] This technique is useful when analyzing a spatial functional data  , where   is a time series data over   period,   is a vector of   covariates, and   is a spatial location (longitude, latitude) of the  -th subject.
  • Co-kriging denotes the joint kriging of data from multiple sources with a relationship between the different data sources.[5] Co-kriging is also possible in a Bayesian approach.[6][7]
  • Bayesian kriging departs from the optimization of unknown coefficients and hyperparameters, which is understood as a maximum likelihood estimate from the Bayesian perspective. Instead, the coefficients and hyperparameters are estimated from their expectation values. An advantage of Bayesian kriging is, that it allows to quantify the evidence for and the uncertainty of the kriging emulator.[8] If the emulator is employed to propagate uncertainties, the quality of the kriging emulator can be assessed by comparing the emulator uncertainty to the total uncertainty (see also Bayesian Polynomial Chaos). Bayesian kriging can also be mixed with co-kriging.[6][7]

Ordinary kriging

edit

The unknown value   is interpreted as a random variable located in  , as well as the values of neighbors samples  . The estimator   is also interpreted as a random variable located in  , a result of the linear combination of variables.

Kriging seeks to minimize the mean square value of the following error in estimating  , subject to lack of bias:

 

The two quality criteria referred to previously can now be expressed in terms of the mean and variance of the new random variable  :

Lack of bias

Since the random function is stationary,  , the weights must sum to 1 in order to ensure that the model is unbiased. This can be seen as follows:

 
 
Minimum variance

Two estimators can have  , but the dispersion around their mean determines the difference between the quality of estimators. To find an estimator with minimum variance, we need to minimize  .

 

See covariance matrix for a detailed explanation.

 

where the literals   stand for

 

Once defined the covariance model or variogram,   or  , valid in all field of analysis of  , then we can write an expression for the estimation variance of any estimator in function of the covariance between the samples and the covariances between the samples and the point to estimate:

 

Some conclusions can be asserted from this expression. The variance of estimation:

  • is not quantifiable to any linear estimator, once the stationarity of the mean and of the spatial covariances, or variograms, are assumed;
  • grows when the covariance between the samples and the point to estimate decreases. This means that, when the samples are farther away from  , the estimation becomes worse;
  • grows with the a priori variance   of the variable  ; when the variable is less disperse, the variance is lower in any point of the area  ;
  • does not depend on the values of the samples, which means that the same spatial configuration (with the same geometrical relations between samples and the point to estimate) always reproduces the same estimation variance in any part of the area  ; this way, the variance does not measure the uncertainty of estimation produced by the local variable.
System of equations
 

Solving this optimization problem (see Lagrange multipliers) results in the kriging system:

 

The additional parameter   is a Lagrange multiplier used in the minimization of the kriging error   to honor the unbiasedness condition.

Simple kriging

edit
 
Simple kriging can be seen as the mean and envelope of Brownian random walks passing through the data points.

Simple kriging is mathematically the simplest, but the least general.[9] It assumes the expectation of the random field is known and relies on a covariance function. However, in most applications neither the expectation nor the covariance are known beforehand.

The practical assumptions for the application of simple kriging are:

  • Wide-sense stationarity of the field (variance stationary).
  • The expectation is zero everywhere:  .
  • Known covariance function  .

The covariance function is a crucial design choice, since it stipulates the properties of the Gaussian process and thereby the behaviour of the model. The covariance function encodes information about, for instance, smoothness and periodicity, which is reflected in the estimate produced. A very common covariance function is the squared exponential, which heavily favours smooth function estimates.[10] For this reason, it can produce poor estimates in many real-world applications, especially when the true underlying function contains discontinuities and rapid changes.

System of equations

The kriging weights of simple kriging have no unbiasedness condition and are given by the simple kriging equation system:

 

This is analogous to a linear regression of   on the other  .

Estimation

The interpolation by simple kriging is given by

 

The kriging error is given by

 

which leads to the generalised least-squares version of the Gauss–Markov theorem (Chiles & Delfiner 1999, p. 159):

 

Bayesian kriging

edit

See also Bayesian Polynomial Chaos

Properties

edit
  • The kriging estimation is unbiased:  .
  • The kriging estimation honors the actually observed value:   (assuming no measurement error is incurred).
  • The kriging estimation   is the best linear unbiased estimator of   if the assumptions hold. However (e.g. Cressie 1993):[11]
    • As with any method, if the assumptions do not hold, kriging might be bad.
    • There might be better nonlinear and/or biased methods.
    • No properties are guaranteed when the wrong variogram is used. However, typically still a "good" interpolation is achieved.
    • Best is not necessarily good: e.g. in case of no spatial dependence the kriging interpolation is only as good as the arithmetic mean.
  • Kriging provides   as a measure of precision. However, this measure relies on the correctness of the variogram.

Applications

edit

Although kriging was developed originally for applications in geostatistics, it is a general method of statistical interpolation and can be applied within any discipline to sampled data from random fields that satisfy the appropriate mathematical assumptions. It can be used where spatially related data has been collected (in 2-D or 3-D) and estimates of "fill-in" data are desired in the locations (spatial gaps) between the actual measurements.

To date kriging has been used in a variety of disciplines, including the following:

Design and analysis of computer experiments

edit

Another very important and rapidly growing field of application, in engineering, is the interpolation of data coming out as response variables of deterministic computer simulations,[28] e.g. finite element method (FEM) simulations. In this case, kriging is used as a metamodeling tool, i.e. a black-box model built over a designed set of computer experiments. In many practical engineering problems, such as the design of a metal forming process, a single FEM simulation might be several hours or even a few days long. It is therefore more efficient to design and run a limited number of computer simulations, and then use a kriging interpolator to rapidly predict the response in any other design point. Kriging is therefore used very often as a so-called surrogate model, implemented inside optimization routines.[29] Kriging-based surrogate models may also be used in the case of mixed integer inputs.[30]

See also

edit

References

edit
  1. ^ Chung, Sang Yong; Venkatramanan, S.; Elzain, Hussam Eldin; Selvam, S.; Prasanna, M. V. (2019). "Supplement of Missing Data in Groundwater-Level Variations of Peak Type Using Geostatistical Methods". GIS and Geostatistical Techniques for Groundwater Science. Elsevier. pp. 33–41. doi:10.1016/b978-0-12-815413-7.00004-3. ISBN 978-0-12-815413-7. S2CID 189989265.
  2. ^ Wahba, Grace (1990). Spline Models for Observational Data. Vol. 59. SIAM. doi:10.1137/1.9781611970128. ISBN 978-0-89871-244-5.
  3. ^ Williams, C. K. I. (1998). "Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond". Learning in Graphical Models. pp. 599–621. doi:10.1007/978-94-011-5014-9_23. ISBN 978-94-010-6104-9.
  4. ^ Lee, Se Yoon; Mallick, Bani (2021). "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas". Sankhya B. 84: 1–43. doi:10.1007/s13571-020-00245-8.
  5. ^ Le Gratiet, Loic; Garnier, Josselin (2014). "Recursive Co-Kriging Model for Design of Computer Experiments with Multiple Levels of Fidelity". International Journal for Uncertainty Quantification. 4 (5): 365–386. doi:10.1615/Int.J.UncertaintyQuantification.2014006914. ISSN 2152-5080. S2CID 14157948.
  6. ^ a b Ranftl, Sascha; Melito, Gian Marco; Badeli, Vahid; Reinbacher-K?stinger, Alice; Ellermann, Katrin; Linden, Wolfgang von der (2025-08-05). "On the Diagnosis of Aortic Dissection with Impedance Cardiography: A Bayesian Feasibility Study Framework with Multi-Fidelity Simulation Data". Proceedings. 33 (1): 24. doi:10.3390/proceedings2019033024. ISSN 2504-3900.
  7. ^ a b Ranftl, Sascha; Melito, Gian Marco; Badeli, Vahid; Reinbacher-K?stinger, Alice; Ellermann, Katrin; von der Linden, Wolfgang (2025-08-05). "Bayesian Uncertainty Quantification with Multi-Fidelity Data and Gaussian Processes for Impedance Cardiography of Aortic Dissection". Entropy. 22 (1): 58. Bibcode:2019Entrp..22...58R. doi:10.3390/e22010058. ISSN 1099-4300. PMC 7516489. PMID 33285833.
  8. ^ Ranftl, Sascha; von der Linden, Wolfgang (2025-08-05). "Bayesian Surrogate Analysis and Uncertainty Propagation". Physical Sciences Forum. 3 (1): 6. arXiv:2101.04038. doi:10.3390/psf2021003006. ISSN 2673-9984.
  9. ^ Olea, Ricardo A. (1999). Geostatistics for Engineers and Earth Scientists. Kluwer Academic. ISBN 978-1-4615-5001-3.
  10. ^ Rasmussen, Carl Edward; Williams, Christopher K. I. (2025-08-05). Gaussian Processes for Machine Learning. doi:10.7551/mitpress/3206.001.0001. ISBN 978-0-262-25683-4.
  11. ^ Cressie 1993, Chiles&Delfiner 1999, Wackernagel 1995.
  12. ^ Bayraktar, Hanefi; Sezer, Turalioglu (2005). "A Kriging-based approach for locating a sampling site—in the assessment of air quality". SERRA. 19 (4): 301–305. Bibcode:2005SERRA..19..301B. doi:10.1007/s00477-005-0234-8. S2CID 122643497.
  13. ^ Chiles, J.-P. and P. Delfiner (1999) Geostatistics, Modeling Spatial Uncertainty, Wiley Series in Probability and statistics.
  14. ^ Zimmerman, D. A.; De Marsily, G.; Gotway, C. A.; Marietta, M. G.; Axness, C. L.; Beauheim, R. L.; Bras, R. L.; Carrera, J.; Dagan, G.; Davies, P. B.; Gallegos, D. P.; Galli, A.; Gómez-Hernández, J.; Grindrod, P.; Gutjahr, A. L.; Kitanidis, P. K.; Lavenue, A. M.; McLaughlin, D.; Neuman, S. P.; Ramarao, B. S.; Ravenne, C.; Rubin, Y. (1998). "A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow" (PDF). Water Resources Research. 34 (6): 1373–1413. Bibcode:1998WRR....34.1373Z. doi:10.1029/98WR00003.
  15. ^ Tonkin, M. J.; Larson, S. P. (2002). "Kriging Water Levels with a Regional-Linear and Point-Logarithmic Drift". Ground Water. 40 (2): 185–193. Bibcode:2002GrWat..40..185T. doi:10.1111/j.1745-6584.2002.tb02503.x. PMID 11916123. S2CID 23008603.
  16. ^ Journel, A. G.; Huijbregts, C. J. (1978). Mining Geostatistics. London: Academic Press. ISBN 0-12-391050-1.
  17. ^ Richmond, A. (2003). "Financially Efficient Ore Selections Incorporating Grade Uncertainty". Mathematical Geology. 35 (2): 195–215. Bibcode:2003MatG...35..195R. doi:10.1023/A:1023239606028. S2CID 116703619.
  18. ^ Goovaerts (1997) Geostatistics for natural resource evaluation, OUP. ISBN 0-19-511538-4
  19. ^ Emery, X. (2005). "Simple and Ordinary Multigaussian Kriging for Estimating Recoverable Reserves". Mathematical Geology. 37 (3): 295–319. Bibcode:2005MatGe..37..295E. doi:10.1007/s11004-005-1560-6. S2CID 92993524.
  20. ^ Papritz, A.; Stein, A. (2002). "Spatial prediction by linear kriging". Spatial Statistics for Remote Sensing. Remote Sensing and Digital Image Processing. Vol. 1. p. 83. doi:10.1007/0-306-47647-9_6. ISBN 0-7923-5978-X.
  21. ^ Barris, J.; Garcia Almirall, P. (2010). "A density function of the appraisal value" (PDF). European Real Estate Society.
  22. ^ Oghenekarho Okobiah, Saraju Mohanty, and Elias Kougianos (2013) Geostatistical-Inspired Fast Layout Optimization of a Nano-CMOS Thermal Sensor. Archived 2025-08-05 at the Wayback Machine, IET Circuits, Devices and Systems (CDS), Vol. 7, No. 5, Sep. 2013, pp. 253–262.
  23. ^ Koziel, Slawomir (2011). "Accurate modeling of microwave devices using kriging-corrected space mapping surrogates". International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 25: 1–14. doi:10.1002/jnm.803. S2CID 62683207.
  24. ^ Pastorello, Nicola (2014). "The SLUGGS survey: exploring the metallicity gradients of nearby early-type galaxies to large radii". Monthly Notices of the Royal Astronomical Society. 442 (2): 1003–1039. arXiv:1405.2338. Bibcode:2014MNRAS.442.1003P. doi:10.1093/mnras/stu937. S2CID 119221897.
  25. ^ Foster, Caroline; Pastorello, Nicola; Roediger, Joel; Brodie, Jean; Forbes, Duncan; Kartha, Sreeja; Pota, Vincenzo; Romanowsky, Aaron; Spitler, Lee; Strader, Jay; Usher, Christopher; Arnold, Jacob (2016). "The SLUGGS survey: stellar kinematics, kinemetry and trends at large radii in 25 early-type galaxies". Monthly Notices of the Royal Astronomical Society. 457 (1): 147–171. arXiv:1512.06130. Bibcode:2016MNRAS.457..147F. doi:10.1093/mnras/stv2947. S2CID 53472235.
  26. ^ Bellstedt, Sabine; Forbes, Duncan; Foster, Caroline; Romanowsky, Aaron; Brodie, Jean; Pastorello, Nicola; Alabi, Adebusola; Villaume, Alexa (2017). "The SLUGGS survey: using extended stellar kinematics to disentangle the formation histories of low-mass S) galaxies". Monthly Notices of the Royal Astronomical Society. 467 (4): 4540–4557. arXiv:1702.05099. Bibcode:2017MNRAS.467.4540B. doi:10.1093/mnras/stx418. S2CID 54521046.
  27. ^ Lee, Se Yoon; Mallick, Bani (2021). "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas". Sankhya B. 84: 1–43. doi:10.1007/s13571-020-00245-8.
  28. ^ Sacks, J.; Welch, W. J.; Mitchell, T. J.; Wynn, H. P. (1989). "Design and Analysis of Computer Experiments". Statistical Science. 4 (4): 409–435. doi:10.1214/ss/1177012413. JSTOR 2245858.
  29. ^ Strano, M. (March 2008). "A technique for FEM optimization under reliability constraint of process variables in sheet metal forming". International Journal of Material Forming. 1 (1): 13–20. doi:10.1007/s12289-008-0001-8. S2CID 136682565.
  30. ^ Saves, Paul; Diouane, Youssef; Bartoli, Nathalie; Lefebvre, Thierry; Morlier, Joseph (2023). "A mixed-categorical correlation kernel for Gaussian process". Neurocomputing. 550: 126472. arXiv:2211.08262. doi:10.1016/j.neucom.2023.126472.

Further reading

edit

Historical references

edit
  1. Chilès, Jean-Paul; Desassis, Nicolas (2018). "Fifty Years of Kriging". Handbook of Mathematical Geosciences. Cham: Springer International Publishing. pp. 589–612. doi:10.1007/978-3-319-78999-6_29. ISBN 978-3-319-78998-9. S2CID 125362741.
  2. Agterberg, F. P., Geomathematics, Mathematical Background and Geo-Science Applications, Elsevier Scientific Publishing Company, Amsterdam, 1974.
  3. Cressie, N. A. C., The origins of kriging, Mathematical Geology, v. 22, pp. 239–252, 1990.
  4. Krige, D. G., A statistical approach to some mine valuations and allied problems at the Witwatersrand, Master's thesis of the University of Witwatersrand, 1951.
  5. Link, R. F. and Koch, G. S., Experimental Designs and Trend-Surface Analsysis, Geostatistics, A colloquium, Plenum Press, New York, 1970.
  6. Matheron, G., "Principles of geostatistics", Economic Geology, 58, pp. 1246–1266, 1963.
  7. Matheron, G., "The intrinsic random functions, and their applications", Adv. Appl. Prob., 5, pp. 439–468, 1973.
  8. Merriam, D. F. (editor), Geostatistics, a colloquium, Plenum Press, New York, 1970.
  9. Mockus, J., "On Bayesian methods for seeking the extremum." Proceedings of the IFIP Technical Conference. 1974.

Books

edit
  • Abramowitz, M., and Stegun, I. (1972), Handbook of Mathematical Functions, Dover Publications, New York.
  • Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC Press, Taylor and Francis Group.
  • Chiles, J.-P. and P. Delfiner (1999) Geostatistics, Modeling Spatial uncertainty, Wiley Series in Probability and statistics.
  • Clark, I., and Harper, W. V., (2000) Practical Geostatistics 2000, Ecosse North America, USA.
  • Cressie, N. (1993) Statistics for spatial data, Wiley, New York.
  • David, M. (1988) Handbook of Applied Advanced Geostatistical Ore Reserve Estimation, Elsevier Scientific Publishing
  • Deutsch, C. V., and Journel, A. G. (1992), GSLIB – Geostatistical Software Library and User's Guide, Oxford University Press, New York, 338 pp.
  • Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation, Oxford University Press, New York, ISBN 0-19-511538-4.
  • Isaaks, E. H., and Srivastava, R. M. (1989), An Introduction to Applied Geostatistics, Oxford University Press, New York, 561 pp.
  • Journel, A. G. and C. J. Huijbregts (1978) Mining Geostatistics, Academic Press London.
  • Journel, A. G. (1989), Fundamentals of Geostatistics in Five Lessons, American Geophysical Union, Washington D.C.
  • Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007), "Section 3.7.4. Interpolation by Kriging", Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8. Also, "Section 15.9. Gaussian Process Regression".
  • Stein, M. L. (1999), Statistical Interpolation of Spatial Data: Some Theory for Kriging, Springer, New York.
  • Wackernagel, H. (1995) Multivariate Geostatistics - An Introduction with Applications, Springer Berlin
晚上为什么不能剪指甲 咳嗽喝什么茶 口腔长期溃疡是什么原因引起的 月经量少吃什么 多吃火龙果有什么好处和坏处
士字五行属什么 gabor是什么牌子 心绞痛吃什么药最管用 有尿意但是尿不出来是什么原因 须尽欢什么意思
胎儿停止发育是什么原因造成的 低血压对身体有什么影响 蓝眼睛的猫是什么品种 为什么会勃起 幽门螺旋杆菌阳性什么症状
泛醇是什么 身上起红点是什么病 黄油可以用什么代替 无花果和什么煲汤好 维生素h的作用及功能主治是什么
一失足成千古恨是什么意思chuanglingweilai.com 空调开不了机是什么原因hcv7jop6ns6r.cn 男性全身皮肤瘙痒是什么原因hcv8jop2ns6r.cn 再生纤维素纤维是什么hcv7jop6ns4r.cn 女人补铁有什么好处hcv9jop3ns1r.cn
毓字五行属什么hcv9jop1ns4r.cn 前羽念什么hcv8jop1ns0r.cn 明年属相是什么生肖hcv8jop0ns8r.cn 佳的五行属什么zhongyiyatai.com 嗓子发炎吃什么消炎药hcv7jop7ns2r.cn
什么叫排卵期baiqunet.com 焦糖色上衣配什么颜色裤子wzqsfys.com 什么球不能拍hcv8jop3ns9r.cn 什么叫醪糟hcv8jop6ns8r.cn 麸质是什么意思hebeidezhi.com
富三代是什么意思520myf.com 亲额头代表什么意思creativexi.com 什么河没有水hcv8jop9ns5r.cn 走路脚后跟疼是什么原因hcv8jop4ns8r.cn 心直口快是什么意思hcv9jop3ns8r.cn
百度