包皮长挂什么科| 狗尾巴草的花语是什么| 恐龙是什么时候灭绝| 下午5点是什么时辰| 俊五行属性是什么| 肝功能异常是什么| 美联储加息意味着什么| 梦见虫子是什么意思| 榧子是什么| 风湿病吃什么药| 晚饭后散步有什么好处| 肝火旺喝什么药| 主理人是什么意思| 减肥什么东西不能吃| 荷花开是什么季节| 痰多吃什么好| 生米煮成熟饭是什么意思| 韩国古代叫什么| 任性什么意思| 走马观花的走什么意思| 胸片可以检查出什么| 孕妇腹泻可以吃什么药| 手脚心热是什么原因| 淋巴挂什么科| 吃什么食物能提高免疫力| 为什么会拉肚子| 男生被口是什么感觉| 格桑花什么时候开花| 八五年属什么生肖| 霍建华为什么娶林心如| 今天忌什么宜什么| 女人多吃什么补黄体酮| 嘉靖为什么不杀严嵩| 什么是自我| 英纳格手表什么档次| 虾滑可以做什么菜| 受持是什么意思| roa是什么| 11号来月经什么时候是排卵期| 为什么一喝酒就拉肚子| 福利姬什么意思| 1980属什么生肖| 子宫内膜炎有什么症状| 时柱将星是什么意思| 今日农历是什么日子| 和可以组什么词| 辟谷吃什么| 立秋是什么时候| 就义是什么意思| 吃什么食物补钙| 猪肚搭配什么煲汤最好| 喜欢出汗是什么原因| 钟表挂在客厅什么位置好| 给你脸了是什么意思| 心机血缺血是什么症状| 四个月是什么字| 肠癌是什么症状| 高压低是什么原因引起的| 初级会计考什么科目| 送呈是什么意思| 茄子炒什么好吃| 黄腔是什么意思| 胳肢窝痒是什么原因| 肠镜前一天可以吃什么| 土豆不能和什么食物一起吃| 刘邦为什么怕吕后| 中国国鸟是什么| 尿血是什么原因引起的| 什么时候怀孕几率最高| 世界上最难的字是什么字| 颤抖是什么意思| 吃莲子有什么好处| 法国铁塔叫什么名字| 位置是什么意思| 菠菜什么时候种最合适| 早上7点多是什么时辰| 四月四号是什么星座| 睾丸痛什么原因| 相见不如怀念是什么意思| 吃饭的时候恶心想吐是什么原因| 揩油什么意思| 小儿支气管炎咳嗽吃什么药好得快| 虎口是什么穴位| 宝宝反复发烧是什么原因引起的| 接见是什么意思| 三十六计第一计是什么计| 绿松石有什么功效| 爱戴是什么意思| 诺贝尔奖是什么意思| 革兰阴性杆菌是什么| 什么是五官| 腾冲有什么好玩的景点| 新诺明又叫什么| 牛筋草有什么功效| 什么不生| 啤酒ipa是什么意思| 砍是什么生肖| 乌龟和鳖有什么区别| 哈儿是什么意思| 牙疼吃什么水果好| 432是什么意思| 望梅止渴什么意思| 哺乳期感冒了能吃什么药| 什么花好看| 布洛芬缓释胶囊是什么药| ac是什么| 胆囊炎吃什么消炎药| 心是什么| 国字脸适合什么发型| 妈妈的外婆叫什么| 艮五行属什么| 什么东西能补肾壮阳| 9月13日是什么星座| 什么是桥本氏甲状腺炎| 碟鱼头是什么鱼| 什么是日记| 蜡烛燃烧会产生什么| 洗澡用什么香皂好| 油价什么时候上涨| 意味深长是什么意思| 塞翁失马是什么生肖| 打佛七什么意思| 西地那非有什么副作用| 小青柑属于什么茶| o型血阳性是什么意思| 脂肪肝可以吃什么水果| 肉桂是什么味道| 牛有几个胃分别叫什么| 儿童牙龈肿痛吃什么药| kai是什么意思| 尿道炎用什么药治疗最好| 生化了是什么意思| 赵雅芝是什么脸型| 喝酒容易醉是什么原因| 社保缴费基数和工资有什么关系| 隐翅虫擦什么药膏| 曾舜晞是什么星座| 阳性阴性是什么意思| 或字多两撇是什么字| 喝什么最解渴| 高血压是什么病| 环切手术是什么| 圆坟是什么意思| 6度醋与9度有什么区别| 海参有什么营养价值| 微博是什么意思| 永加一个日念什么| 胃不好吃什么养胃水果| 儿童吃什么钙片补钙效果好| 怕热易出汗是什么原因| 尊巴是什么| 承蒙不弃什么意思| 脚底褪皮是什么原因| 卡波姆是什么| 一什么圆月| 枯草芽孢杆菌治什么病| 什么茶助眠| 定性是什么意思| 儿童办护照需要什么证件| 什么来钱快| 哈尼什么意思| 尿黄什么原因| 血压高什么原因引起的| 心口痛挂什么科| 制片人是干什么的| 保安的职责是什么| 九品芝麻官是什么级别| 8月29是什么星座| 4月15日是什么日子| 越南古代叫什么| 张姓五行属什么| 做脑部ct挂什么科| 毒龙钻什么意思| vertu手机为什么那么贵| 母子健康手册有什么用| 什么叫总胆红素| 什么是c字裤| 拾荒者是什么意思| 什么人容易怀葡萄胎| 固精缩尿是什么意思| 看腋窝挂什么科| 梦到自己孩子死了是什么征兆| 手抖吃什么药| 红参和高丽参有什么区别| 姜太公钓鱼愿者上钩是什么意思| 梦见出血是什么征兆| 监狱长是什么级别| 什么牌子皮带结实耐用| 五行属什么怎么看| 7月1号是什么节| 大学是什么学历| 上热下寒吃什么食物好| 62岁属什么生肖| 年纪是什么意思| 完璧归赵发生在什么时期| 手指头发红是什么原因| 头发发黄是什么原因造成的| tba是什么意思| 艺伎什么意思| 辰寅卯是什么生肖| 粉玫瑰适合送什么人| 锑是什么| 梦见做被子什么意思| 多普勒超声检查是什么| 血管瘤长什么样子图片| 无畏布施是什么意思| 一什么头巾| 826是什么意思| 爱因斯坦发明了什么| 谷维素片治什么病| 这个故事告诉我们什么道理| 喉咙痛看什么科| 属虎和什么属相最配| 反目成仇是什么意思| 戈美其鞋子是什么档次| 小孩自闭症是什么原因引起的| 后壁是什么意思| 什么才是真正的情人| 脑白质脱髓鞘是什么意思| wilson是什么意思| 蚕蛹过敏什么办法最快| roi是什么| 梦到好多蛇是什么意思| 黄金属于五行属什么| 阴道里面长什么样| 吃什么能增强记忆力| 癞蛤蟆长什么样| 猫条是什么| 前来是什么意思| 七夕什么时候| 金色配什么颜色好看| 七月十六是什么日子| 沙僧的武器叫什么名字| 降压药的原理是什么| 2008年属鼠是什么命| 造纸术是什么时候发明的| 什么的感受| 吃过期药有什么危害| 做什么生意最赚钱| 2012属什么生肖| 头发油是什么原因| 树叶为什么是绿色的| 越什么越什么的词语| 高密度脂蛋白胆固醇偏低是什么原因| 礼成是什么意思| 头痛吃什么| 犯规是什么意思| 马克笔是什么笔| 谷字五行属什么| 贫血吃什么维生素| 早上起来心慌是什么原因| 女人肾虚吃什么补回来| 印度人为什么不吃猪肉| 包皮真菌感染用什么药| 喝葡萄汁有什么好处| 女生学什么专业好| 蚊子怕什么气味| 中午1点是什么时辰| 锅烧是什么| 大海里面有什么| 不是经期有少量出血是什么原因| 性欲是什么意思| 胃酸吃什么药效果最好| 第一次见家长送什么礼物好| 百度

吃多种维生素有什么好处和坏处

百度 一般情况下交了定金,骗子会手写一份购车清单交给客户,里面也有标明优惠后的车价、赠送的精品等等。

A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" (zero) and "1" (one). A binary number may also refer to a rational number that has a finite representation in the binary numeral system, that is, the quotient of an integer by a power of two.

The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation.[1]

Decimal
number
Binary
number
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

History

edit

The modern binary number system was studied in Europe in the 16th and 17th centuries by Thomas Harriot, and Gottfried Leibniz. However, systems related to binary numbers have appeared earlier in multiple cultures including ancient Egypt, China, Europe and India.

Egypt

edit
 
Arithmetic values thought to have been represented by parts of the Eye of Horus

The scribes of ancient Egypt used two different systems for their fractions, Egyptian fractions (not related to the binary number system) and Horus-Eye fractions (so called because some historians of mathematics believed that the symbols used for this system could be arranged to form the eye of Horus, although this has been disputed).[2] Horus-Eye fractions are a binary numbering system for fractional quantities of grain, liquids, or other measures, in which a fraction of a hekat is expressed as a sum of the binary fractions 1/2, 1/4, 1/8, 1/16, 1/32, and 1/64. Early forms of this system can be found in documents from the Fifth Dynasty of Egypt, approximately 2400 BC, and its fully developed hieroglyphic form dates to the Nineteenth Dynasty of Egypt, approximately 1200 BC.[3]

The method used for ancient Egyptian multiplication is also closely related to binary numbers. In this method, multiplying one number by a second is performed by a sequence of steps in which a value (initially the first of the two numbers) is either doubled or has the first number added back into it; the order in which these steps are to be performed is given by the binary representation of the second number. This method can be seen in use, for instance, in the Rhind Mathematical Papyrus, which dates to around 1650 BC.[4]

China

edit
 
Daoist Bagua

The I Ching dates from the 9th century BC in China.[5] The binary notation in the I Ching is used to interpret its quaternary divination technique.[6]

It is based on taoistic duality of yin and yang.[7] Eight trigrams (Bagua) and a set of 64 hexagrams ("sixty-four" gua), analogous to the three-bit and six-bit binary numerals, were in use at least as early as the Zhou dynasty of ancient China.[5]

The Song dynasty scholar Shao Yong (1011–1077) rearranged the hexagrams in a format that resembles modern binary numbers, although he did not intend his arrangement to be used mathematically.[6] Viewing the least significant bit on top of single hexagrams in Shao Yong's square[8] and reading along rows either from bottom right to top left with solid lines as 0 and broken lines as 1 or from top left to bottom right with solid lines as 1 and broken lines as 0 hexagrams can be interpreted as sequence from 0 to 63. [9]

Classical antiquity

edit

Etruscans divided the outer edge of divination livers into sixteen parts, each inscribed with the name of a divinity and its region of the sky. Each liver region produced a binary reading which was combined into a final binary for divination.[10]

Divination at Ancient Greek Dodona oracle worked by drawing from separate jars, questions tablets and "yes" and "no" pellets. The result was then combined to make a final prophecy.[11]

India

edit

The Indian scholar Pingala (c. 2nd century BC) developed a binary system for describing prosody.[12][13] He described meters in the form of short and long syllables (the latter equal in length to two short syllables).[14] They were known as laghu (light) and guru (heavy) syllables.

Pingala's Hindu classic titled Chanda??āstra (8.23) describes the formation of a matrix in order to give a unique value to each meter. "Chanda??āstra" literally translates to science of meters in Sanskrit. The binary representations in Pingala's system increases towards the right, and not to the left like in the binary numbers of the modern positional notation.[15] In Pingala's system, the numbers start from number one, and not zero. Four short syllables "0000" is the first pattern and corresponds to the value one. The numerical value is obtained by adding one to the sum of place values.[16]

Africa

edit

The Ifá is an African divination system. Similar to the I Ching, but has up to 256 binary signs,[17] unlike the I Ching which has 64. The Ifá originated in 15th century West Africa among Yoruba people. In 2008, UNESCO added Ifá to its list of the "Masterpieces of the Oral and Intangible Heritage of Humanity".[18][19]

Other cultures

edit

The residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system before 1450.[20] Slit drums with binary tones are used to encode messages across Africa and Asia.[7] Sets of binary combinations similar to the I Ching have also been used in traditional African divination systems, such as Ifá among others, as well as in medieval Western geomancy. The majority of Indigenous Australian languages use a base-2 system.[21]

Western predecessors to Leibniz

edit

In the late 13th century Ramon Llull had the ambition to account for all wisdom in every branch of human knowledge of the time. For that purpose he developed a general method or "Ars generalis" based on binary combinations of a number of simple basic principles or categories, for which he has been considered a predecessor of computing science and artificial intelligence.[22]

In 1605, Francis Bacon discussed a system whereby letters of the alphabet could be reduced to sequences of binary digits, which could then be encoded as scarcely visible variations in the font in any random text.[23] Importantly for the general theory of binary encoding, he added that this method could be used with any objects at all: "provided those objects be capable of a twofold difference only; as by Bells, by Trumpets, by Lights and Torches, by the report of Muskets, and any instruments of like nature".[23] (See Bacon's cipher.)

In 1617, John Napier described a system he called location arithmetic for doing binary calculations using a non-positional representation by letters. Thomas Harriot investigated several positional numbering systems, including binary, but did not publish his results; they were found later among his papers.[24] Possibly the first publication of the system in Europe was by Juan Caramuel y Lobkowitz, in 1700.[25]

Leibniz

edit
 
Gottfried Leibniz

Leibniz wrote in excess of a hundred manuscripts on binary, most of them remaining unpublished.[26] Before his first dedicated work in 1679, numerous manuscripts feature early attempts to explore binary concepts, including tables of numbers and basic calculations, often scribbled in the margins of works unrelated to mathematics.[26]

His first known work on binary, “On the Binary Progression", in 1679, Leibniz introduced conversion between decimal and binary, along with algorithms for performing basic arithmetic operations such as addition, subtraction, multiplication, and division using binary numbers. He also developed a form of binary algebra to calculate the square of a six-digit number and to extract square roots.[26]

His most well known work appears in his article Explication de l'Arithmétique Binaire (published in 1703). The full title of Leibniz's article is translated into English as the "Explanation of Binary Arithmetic, which uses only the characters 1 and 0, with some remarks on its usefulness, and on the light it throws on the ancient Chinese figures of Fu Xi".[27] Leibniz's system uses 0 and 1, like the modern binary numeral system. An example of Leibniz's binary numeral system is as follows:[27]

0 0 0 1   numerical value 20
0 0 1 0   numerical value 21
0 1 0 0   numerical value 22
1 0 0 0   numerical value 23

While corresponding with the Jesuit priest Joachim Bouvet in 1700, who had made himself an expert on the I Ching while a missionary in China, Leibniz explained his binary notation, and Bouvet demonstrated in his 1701 letters that the I Ching was an independent, parallel invention of binary notation. Leibniz & Bouvet concluded that this mapping was evidence of major Chinese accomplishments in the sort of philosophical mathematics he admired.[28] Of this parallel invention, Leibniz wrote in his "Explanation Of Binary Arithmetic" that "this restitution of their meaning, after such a great interval of time, will seem all the more curious."[29]

The relation was a central idea to his universal concept of a language or characteristica universalis, a popular idea that would be followed closely by his successors such as Gottlob Frege and George Boole in forming modern symbolic logic.[30] Leibniz was first introduced to the I Ching through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary. Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own religious beliefs as a Christian.[31] Binary numerals were central to Leibniz's theology. He believed that binary numbers were symbolic of the Christian idea of creatio ex nihilo or creation out of nothing.[32]

[A concept that] is not easy to impart to the pagans, is the creation ex nihilo through God's almighty power. Now one can say that nothing in the world can better present and demonstrate this power than the origin of numbers, as it is presented here through the simple and unadorned presentation of One and Zero or Nothing.

—?Leibniz's letter to the Duke of Brunswick attached with the I Ching hexagrams[31]

Later developments

edit
 
George Boole

In 1854, British mathematician George Boole published a landmark paper detailing an algebraic system of logic that would become known as Boolean algebra. His logical calculus was to become instrumental in the design of digital electronic circuitry.[33]

In 1937, Claude Shannon produced his master's thesis at MIT that implemented Boolean algebra and binary arithmetic using electronic relays and switches for the first time in history. Entitled A Symbolic Analysis of Relay and Switching Circuits, Shannon's thesis essentially founded practical digital circuit design.[34]

In November 1937, George Stibitz, then working at Bell Labs, completed a relay-based computer he dubbed the "Model K" (for "Kitchen", where he had assembled it), which calculated using binary addition.[35] Bell Labs authorized a full research program in late 1938 with Stibitz at the helm. Their Complex Number Computer, completed 8 January 1940, was able to calculate complex numbers. In a demonstration to the American Mathematical Society conference at Dartmouth College on 11 September 1940, Stibitz was able to send the Complex Number Calculator remote commands over telephone lines by a teletype. It was the first computing machine ever used remotely over a phone line. Some participants of the conference who witnessed the demonstration were John von Neumann, John Mauchly and Norbert Wiener, who wrote about it in his memoirs.[36][37][38]

The Z1 computer, which was designed and built by Konrad Zuse between 1935 and 1938, used Boolean logic and binary floating-point numbers.[39]

Representation

edit

Any number can be represented by a sequence of bits (binary digits), which in turn may be represented by any mechanism capable of being in two mutually exclusive states. Any of the following rows of symbols can be interpreted as the binary numeric value of 667:

1 0 1 0 0 1 1 0 1 1
| | | | | |
? ? ? ? ? ? ? ? ? ?
y n y n n y y n y y
T F T F F T T F T T
 
A binary clock might use LEDs to express binary values. In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time.

The numeric value represented in each case depends on the value assigned to each symbol. In the earlier days of computing, switches, punched holes, and punched paper tapes were used to represent binary values.[40] In a modern computer, the numeric values may be represented by two different voltages; on a magnetic disk, magnetic polarities may be used. A "positive", "yes", or "on" state is not necessarily equivalent to the numerical value of one; it depends on the architecture in use.

In keeping with the customary representation of numerals using Arabic numerals, binary numbers are commonly written using the symbols 0 and 1. When written, binary numerals are often subscripted, prefixed, or suffixed to indicate their base, or radix. The following notations are equivalent:

  • 100101 binary (explicit statement of format)
  • 100101b (a suffix indicating binary format; also known as Intel convention[41][42])
  • 100101B (a suffix indicating binary format)
  • bin 100101 (a prefix indicating binary format)
  • 1001012 (a subscript indicating base-2 (binary) notation)
  • %100101 (a prefix indicating binary format; also known as Motorola convention[41][42])
  • 0b100101 (a prefix indicating binary format, common in programming languages)
  • 6b100101 (a prefix indicating number of bits in binary format, common in programming languages)
  • #b100101 (a prefix indicating binary format, common in Lisp programming languages)

When spoken, binary numerals are usually read digit-by-digit, to distinguish them from decimal numerals. For example, the binary numeral 100 is pronounced one zero zero, rather than one hundred, to make its binary nature explicit and for purposes of correctness. Since the binary numeral 100 represents the value four, it would be confusing to refer to the numeral as one hundred (a word that represents a completely different value, or amount). Alternatively, the binary numeral 100 can be read out as "four" (the correct value), but this does not make its binary nature explicit.

Counting in binary

edit

Counting in binary is similar to counting in any other number system. Beginning with a single digit, counting proceeds through each symbol, in increasing order. Before examining binary counting, it is useful to briefly discuss the more familiar decimal counting system as a frame of reference.

Decimal counting

edit

Decimal counting uses the ten symbols 0 through 9. Counting begins with the incremental substitution of the least significant digit (rightmost digit) which is often called the first digit. When the available symbols for this position are exhausted, the least significant digit is reset to 0, and the next digit of higher significance (one position to the left) is incremented (overflow), and incremental substitution of the low-order digit resumes. This method of reset and overflow is repeated for each digit of significance. Counting progresses as follows:

000, 001, 002, ... 007, 008, 009, (rightmost digit is reset to zero, and the digit to its left is incremented)
010, 011, 012, ...
   ...
090, 091, 092, ... 097, 098, 099, (rightmost two digits are reset to zeroes, and next digit is incremented)
100, 101, 102, ...

Binary counting

edit
 
This counter shows how to count in binary from numbers zero through thirty-one.
 
A party trick to guess a number from which cards it is printed on uses the bits of the binary representation of the number. In the SVG file, click a card to toggle it

Binary counting follows the exact same procedure, and again the incremental substitution begins with the least significant binary digit, or bit (the rightmost one, also called the first bit), except that only the two symbols 0 and 1 are available. Thus, after a bit reaches 1 in binary, an increment resets it to 0 but also causes an increment of the next bit to the left:

0000,
0001, (rightmost bit starts over, and the next bit is incremented)
0010, 0011, (rightmost two bits start over, and the next bit is incremented)
0100, 0101, 0110, 0111, (rightmost three bits start over, and the next bit is incremented)
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 ...

In the binary system, each bit represents an increasing power of 2, with the rightmost bit representing 20, the next representing 21, then 22, and so on. The value of a binary number is the sum of the powers of 2 represented by each "1"?bit. For example, the binary number 100101 is converted to decimal form as follows:

1001012 = [ ( 1 ) × 25 ] + [ ( 0 ) × 24 ] + [ ( 0 ) × 23 ] + [ ( 1 ) × 22 ] + [ ( 0 ) × 21 ] + [ ( 1 ) × 20 ]
1001012 = [ 1 × 32 ] + [ 0 × 16 ] + [ 0 × 8 ] + [ 1 × 4 ] + [ 0 × 2 ] + [ 1 × 1 ]
1001012 = 3710

Fractions

edit

Fractions in binary arithmetic terminate only if the denominator is a power of 2. As a result, 1/10 does not have a finite binary representation (10 has prime factors 2 and 5). This causes 10 × 1/10 not to precisely equal 1 in binary floating-point arithmetic. As an example, to interpret the binary expression for 1/3 = .010101..., this means: 1/3 = 0 × 2?1 + 1 × 2?2 + 0 × 2?3 + 1 × 2?4 + ... = 0.3125 + ... An exact value cannot be found with a sum of a finite number of inverse powers of two, the zeros and ones in the binary representation of 1/3 alternate forever.

Fraction Decimal Binary Fractional approximation
1/1 1 or 0.999... 1 or 0.1 1/2 + 1/4 + 1/8...
1/2 0.5 or 0.4999... 0.1 or 0.01 1/4 + 1/8 + 1/16 . . .
1/3 0.333... 0.01 1/4 + 1/16 + 1/64 . . .
1/4 0.25 or 0.24999... 0.01 or 0.001 1/8 + 1/16 + 1/32 . . .
1/5 0.2 or 0.1999... 0.0011 1/8 + 1/16 + 1/128 . . .
1/6 0.1666... 0.001 1/8 + 1/32 + 1/128 . . .
1/7 0.142857142857... 0.001 1/8 + 1/64 + 1/512 . . .
1/8 0.125 or 0.124999... 0.001 or 0.0001 1/16 + 1/32 + 1/64 . . .
1/9 0.111... 0.000111 1/16 + 1/32 + 1/64 . . .
1/10 0.1 or 0.0999... 0.00011 1/16 + 1/32 + 1/256 . . .
1/11 0.090909... 0.0001011101 1/16 + 1/64 + 1/128 . . .
1/12 0.08333... 0.0001 1/16 + 1/64 + 1/256 . . .
1/13 0.076923076923... 0.000100111011 1/16 + 1/128 + 1/256 . . .
1/14 0.0714285714285... 0.0001 1/16 + 1/128 + 1/1024 . . .
1/15 0.0666... 0.0001 1/16 + 1/256 . . .
1/16 0.0625 or 0.0624999... 0.0001 or 0.00001 1/32 + 1/64 + 1/128 . . .

Binary arithmetic

edit

Arithmetic in binary is much like arithmetic in other positional notation numeral systems. Addition, subtraction, multiplication, and division can be performed on binary numerals.

Addition

edit
 
The circuit diagram for a binary half adder, which adds two bits together, producing sum and carry bits

The simplest arithmetic operation in binary is addition. Adding two single-digit binary numbers is relatively simple, using a form of carrying:

0 + 0 → 0
0 + 1 → 1
1 + 0 → 1
1 + 1 → 0, carry 1 (since 1 + 1 = 2 = 0 + (1 × 21) )

Adding two "1" digits produces a digit "0", while 1 will have to be added to the next column. This is similar to what happens in decimal when certain single-digit numbers are added together; if the result equals or exceeds the value of the radix (10), the digit to the left is incremented:

5 + 5 → 0, carry 1 (since 5 + 5 = 10 = 0 + (1 × 101) )
7 + 9 → 6, carry 1 (since 7 + 9 = 16 = 6 + (1 × 101) )

This is known as carrying. When the result of an addition exceeds the value of a digit, the procedure is to "carry" the excess amount divided by the radix (that is, 10/10) to the left, adding it to the next positional value. This is correct since the next position has a weight that is higher by a factor equal to the radix. Carrying works the same way in binary:

  1 1 1 1 1    (carried digits)
    0 1 1 0 1
+   1 0 1 1 1
-------------
= 1 0 0 1 0 0 = 36

In this example, two numerals are being added together: 011012 (1310) and 101112 (2310). The top row shows the carry bits used. Starting in the rightmost column, 1 + 1 = 102. The 1 is carried to the left, and the 0 is written at the bottom of the rightmost column. The second column from the right is added: 1 + 0 + 1 = 102 again; the 1 is carried, and 0 is written at the bottom. The third column: 1 + 1 + 1 = 112. This time, a 1 is carried, and a 1 is written in the bottom row. Proceeding like this gives the final answer 1001002 (3610).

When computers must add two numbers, the rule that: x xor y = (x + y) mod 2 for any two bits x and y allows for very fast calculation, as well.

Long carry method

edit

A simplification for many binary addition problems is the "long carry method" or "Brookhouse Method of Binary Addition". This method is particularly useful when one of the numbers contains a long stretch of ones. It is based on the simple premise that under the binary system, when given a stretch of digits composed entirely of n ones (where n is any integer length), adding 1 will result in the number 1 followed by a string of n zeros. That concept follows, logically, just as in the decimal system, where adding 1 to a string of n 9s will result in the number 1 followed by a string of n 0s:

     Binary                        Decimal
    1 1 1 1 1     likewise        9 9 9 9 9
 +          1                  +          1
  ———————————                   ———————————
  1 0 0 0 0 0                   1 0 0 0 0 0

Such long strings are quite common in the binary system. From that one finds that large binary numbers can be added using two simple steps, without excessive carry operations. In the following example, two numerals are being added together: 1 1 1 0 1 1 1 1 1 02 (95810) and 1 0 1 0 1 1 0 0 1 12 (69110), using the traditional carry method on the left, and the long carry method on the right:

Traditional Carry Method                       Long Carry Method
                                vs.
  1 1 1   1 1 1 1 1      (carried digits)   1 ←     1 ←            carry the 1 until it is one digit past the "string" below
    1 1 1 0 1 1 1 1 1 0                       1 1 1 0 1 1 1 1 1 0  cross out the "string",
+   1 0 1 0 1 1 0 0 1 1                   +   1 0 1 0 1 1 0 0 1 1  and cross out the digit that was added to it
———————————————————————                    ——————————————————————
= 1 1 0 0 1 1 1 0 0 0 1                     1 1 0 0 1 1 1 0 0 0 1

The top row shows the carry bits used. Instead of the standard carry from one column to the next, the lowest-ordered "1" with a "1" in the corresponding place value beneath it may be added and a "1" may be carried to one digit past the end of the series. The "used" numbers must be crossed off, since they are already added. Other long strings may likewise be cancelled using the same technique. Then, simply add together any remaining digits normally. Proceeding in this manner gives the final answer of 1 1 0 0 1 1 1 0 0 0 12 (164910). In our simple example using small numbers, the traditional carry method required eight carry operations, yet the long carry method required only two, representing a substantial reduction of effort.

Addition table

edit
0 1
0 0 1
1 1 10

The binary addition table is similar to, but not the same as, the truth table of the logical disjunction operation  . The difference is that  , while  .

Subtraction

edit

Subtraction works in much the same way:

0 ? 0 → 0
0 ? 1 → 1, borrow 1
1 ? 0 → 1
1 ? 1 → 0

Subtracting a "1" digit from a "0" digit produces the digit "1", while 1 will have to be subtracted from the next column. This is known as borrowing. The principle is the same as for carrying. When the result of a subtraction is less than 0, the least possible value of a digit, the procedure is to "borrow" the deficit divided by the radix (that is, 10/10) from the left, subtracting it from the next positional value.

    *   * * *   (starred columns are borrowed from)
  1 1 0 1 1 1 0
?     1 0 1 1 1
----------------
= 1 0 1 0 1 1 1
  *             (starred columns are borrowed from)
  1 0 1 1 1 1 1
–   1 0 1 0 1 1
----------------
= 0 1 1 0 1 0 0

Subtracting a positive number is equivalent to adding a negative number of equal absolute value. Computers use signed number representations to handle negative numbers—most commonly the two's complement notation. Such representations eliminate the need for a separate "subtract" operation. Using two's complement notation, subtraction can be summarized by the following formula:

A ? B = A + not B + 1

Multiplication

edit

Multiplication in binary is similar to its decimal counterpart. Two numbers A and B can be multiplied by partial products: for each digit in B, the product of that digit in A is calculated and written on a new line, shifted leftward so that its rightmost digit lines up with the digit in B that was used. The sum of all these partial products gives the final result.

Since there are only two digits in binary, there are only two possible outcomes of each partial multiplication:

  • If the digit in B is 0, the partial product is also 0
  • If the digit in B is 1, the partial product is equal to A

For example, the binary numbers 1011 and 1010 are multiplied as follows:

           1 0 1 1   (A)
         × 1 0 1 0   (B)
         ---------
           0 0 0 0   ← to the rightmost 'zero' in B
   +     1 0 1 1     ← to the next 'one' in B
   +   0 0 0 0
   + 1 0 1 1
   ---------------
   = 1 1 0 1 1 1 0

Binary numbers can also be multiplied with bits after a binary point:

               1 0 1 . 1 0 1     A (5.625 in decimal)
             × 1 1 0 . 0 1       B (6.25 in decimal)
             -------------------
                   1 . 0 1 1 0 1   ← to a 'one' in B
     +           0 0 . 0 0 0 0     ← to a 'zero' in B
     +         0 0 0 . 0 0 0
     +       1 0 1 1 . 0 1
     +     1 0 1 1 0 . 1
     ---------------------------
     =   1 0 0 0 1 1 . 0 0 1 0 1 (35.15625 in decimal)

See also Booth's multiplication algorithm.

Multiplication table

edit
0 1
0 0 0
1 0 1

The binary multiplication table is the same as the truth table of the logical conjunction operation  .

Division

edit

Long division in binary is again similar to its decimal counterpart.

In the example below, the divisor is 1012, or 5 in decimal, while the dividend is 110112, or 27 in decimal. The procedure is the same as that of decimal long division; here, the divisor 1012 goes into the first three digits 1102 of the dividend one time, so a "1" is written on the top line. This result is multiplied by the divisor, and subtracted from the first three digits of the dividend; the next digit (a "1") is included to obtain a new three-digit sequence:

              1
        ___________
1 0 1   ) 1 1 0 1 1
        ? 1 0 1
          -----
          0 0 1

The procedure is then repeated with the new sequence, continuing until the digits in the dividend have been exhausted:

             1 0 1
       ___________
1 0 1  ) 1 1 0 1 1
       ? 1 0 1
         -----
             1 1 1
         ?   1 0 1
             -----
             0 1 0

Thus, the quotient of 110112 divided by 1012 is 1012, as shown on the top line, while the remainder, shown on the bottom line, is 102. In decimal, this corresponds to the fact that 27 divided by 5 is 5, with a remainder of 2.

Aside from long division, one can also devise the procedure so as to allow for over-subtracting from the partial remainder at each iteration, thereby leading to alternative methods which are less systematic, but more flexible as a result.

Square root

edit

The process of taking a binary square root digit by digit is essentially the same as for a decimal square root but much simpler, due to the binary nature. First group the digits in pairs, using a leading 0 if necessary so there are an even number of digits. Now at each step, consider the answer so far, extended with the digits 01. If this can be subtracted from the current remainder, do so. Then extend the remainder with the next pair of digits. If you subtracted, the next digit of the answer is 1, otherwise it's 0.

                             1                          1  1                       1  1  0                   1  1  0  1
 -------------             -------------              -------------              -------------             -------------
√ 10 10 10 01             √ 10 10 10 01              √ 10 10 10 01              √ 10 10 10 01             √ 10 10 10 01
                           - 1                        - 1                        - 1                       - 1         
Answer so far is 0,        ----                       ----                       ----                      ----        
extended by 01 is 001,       1 10                       1 10                       1 10                      1 10
this CAN be subtracted                                - 1 01                     - 1 01                    - 1 01
from first pair 10,       Answer so far is 1,         -------                    -------                   -------
so first digit of         extended by 01 is 101,           1 10                       1 10 01                   1 10 01
answer is 1.              this CAN be subtracted                                                              - 1 10 01
                          from remainder 110, so     Answer so far is 11,       Answer so far is 110,         ----------
                          next answer digit is 1.    extended by 01 is 1101,    extended by 01 is 11001,              0
                                                     this is TOO BIG to         this CAN be subtracted
                                                     subtract from remainder    from remainder 11001, so           Done!
                                                     110, so next digit of      next digit of answer is 1.
                                                     answer is 0.

Bitwise operations

edit

Though not directly related to the numerical interpretation of binary symbols, sequences of bits may be manipulated using Boolean logical operators. When a string of binary symbols is manipulated in this way, it is called a bitwise operation; the logical operators AND, OR, and XOR may be performed on corresponding bits in two binary numerals provided as input. The logical NOT operation may be performed on individual bits in a single binary numeral provided as input. Sometimes, such operations may be used as arithmetic short-cuts, and may have other computational benefits as well. For example, an arithmetic shift left of a binary number is the equivalent of multiplication by a (positive, integral) power of 2.

Conversion to and from other numeral systems

edit

Decimal to binary

edit
 
Conversion of (357)10 to binary notation results in (101100101)

To convert from a base-10 integer to its base-2 (binary) equivalent, the number is divided by two. The remainder is the least-significant bit. The quotient is again divided by two; its remainder becomes the next least significant bit. This process repeats until a quotient of one is reached. The sequence of remainders (including the final quotient of one) forms the binary value, as each remainder must be either zero or one when dividing by two. For example, (357)10 is expressed as (101100101)2.[43]

Binary to decimal

edit

Conversion from base-2 to base-10 simply inverts the preceding algorithm. The bits of the binary number are used one by one, starting with the most significant (leftmost) bit. Beginning with the value 0, the prior value is doubled, and the next bit is then added to produce the next value. This can be organized in a multi-column table. For example, to convert 100101011012 to decimal:

Prior value × 2 + Next bit = Next value
0 × 2 + 1 = 1
1 × 2 + 0 = 2
2 × 2 + 0 = 4
4 × 2 + 1 = 9
9 × 2 + 0 = 18
18 × 2 + 1 = 37
37 × 2 + 0 = 74
74 × 2 + 1 = 149
149 × 2 + 1 = 299
299 × 2 + 0 = 598
598 × 2 + 1 = 1197

The result is 119710. The first Prior Value of 0 is simply an initial decimal value. This method is an application of the Horner scheme.

Binary  1 0 0 1 0 1 0 1 1 0 1
Decimal  1×210 + 0×29 + 0×28 + 1×27 + 0×26 + 1×25 + 0×24 + 1×23 + 1×22 + 0×21 + 1×20 = 1197

The fractional parts of a number are converted with similar methods. They are again based on the equivalence of shifting with doubling or halving.

In a fractional binary number such as 0.110101101012, the first digit is  , the second  , etc. So if there is a 1 in the first place after the decimal, then the number is at least  , and vice versa. Double that number is at least 1. This suggests the algorithm: Repeatedly double the number to be converted, record if the result is at least 1, and then throw away the integer part.

For example,  , in binary, is:

Converting Result
  0.
  0.0
  0.01
  0.010
  0.0101

Thus the repeating decimal fraction 0.3... is equivalent to the repeating binary fraction 0.01... .

Or for example, 0.110, in binary, is:

Converting Result
0.1 0.
0.1 × 2 = 0.2 < 1 0.0
0.2 × 2 = 0.4 < 1 0.00
0.4 × 2 = 0.8 < 1 0.000
0.8 × 2 = 1.6 ≥ 1 0.0001
0.6 × 2 = 1.2 ≥ 1 0.00011
0.2 × 2 = 0.4 < 1 0.000110
0.4 × 2 = 0.8 < 1 0.0001100
0.8 × 2 = 1.6 ≥ 1 0.00011001
0.6 × 2 = 1.2 ≥ 1 0.000110011
0.2 × 2 = 0.4 < 1 0.0001100110

This is also a repeating binary fraction 0.00011... . It may come as a surprise that terminating decimal fractions can have repeating expansions in binary. It is for this reason that many are surprised to discover that 1/10 + ... + 1/10 (addition of 10 numbers) differs from 1 in binary floating-point arithmetic. In fact, the only binary fractions with terminating expansions are of the form of an integer divided by a power of 2, which 1/10 is not.

The final conversion is from binary to decimal fractions. The only difficulty arises with repeating fractions, but otherwise the method is to shift the fraction to an integer, convert it as above, and then divide by the appropriate power of two in the decimal base. For example:

 

Another way of converting from binary to decimal, often quicker for a person familiar with hexadecimal, is to do so indirectly—first converting (  in binary) into (  in hexadecimal) and then converting (  in hexadecimal) into (  in decimal).

For very large numbers, these simple methods are inefficient because they perform a large number of multiplications or divisions where one operand is very large. A simple divide-and-conquer algorithm is more effective asymptotically: given a binary number, it is divided by 10k, where k is chosen so that the quotient roughly equals the remainder; then each of these pieces is converted to decimal and the two are concatenated. Given a decimal number, it can be split into two pieces of about the same size, each of which is converted to binary, whereupon the first converted piece is multiplied by 10k and added to the second converted piece, where k is the number of decimal digits in the second, least-significant piece before conversion.

Hexadecimal

edit
0hex = 0dec = 0oct 0 0 0 0
1hex = 1dec = 1oct 0 0 0 1
2hex = 2dec = 2oct 0 0 1 0
3hex = 3dec = 3oct 0 0 1 1
4hex = 4dec = 4oct 0 1 0 0
5hex = 5dec = 5oct 0 1 0 1
6hex = 6dec = 6oct 0 1 1 0
7hex = 7dec = 7oct 0 1 1 1
8hex = 8dec = 10oct 1 0 0 0
9hex = 9dec = 11oct 1 0 0 1
Ahex = 10dec = 12oct 1 0 1 0
Bhex = 11dec = 13oct 1 0 1 1
Chex = 12dec = 14oct 1 1 0 0
Dhex = 13dec = 15oct 1 1 0 1
Ehex = 14dec = 16oct 1 1 1 0
Fhex = 15dec = 17oct 1 1 1 1

Binary may be converted to and from hexadecimal more easily. This is because the radix of the hexadecimal system (16) is a power of the radix of the binary system (2). More specifically, 16 = 24, so it takes four digits of binary to represent one digit of hexadecimal, as shown in the adjacent table.

To convert a hexadecimal number into its binary equivalent, simply substitute the corresponding binary digits:

3A16 = 0011 10102
E716 = 1110 01112

To convert a binary number into its hexadecimal equivalent, divide it into groups of four bits. If the number of bits isn't a multiple of four, simply insert extra 0 bits at the left (called padding). For example:

10100102 = 0101 0010 grouped with padding = 5216
110111012 = 1101 1101 grouped = DD16

To convert a hexadecimal number into its decimal equivalent, multiply the decimal equivalent of each hexadecimal digit by the corresponding power of 16 and add the resulting values:

C0E716 = (12 × 163) + (0 × 162) + (14 × 161) + (7 × 160) = (12 × 4096) + (0 × 256) + (14 × 16) + (7 × 1) = 49,38310

Octal

edit

Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two (namely, 23, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above. Binary 000 is equivalent to the octal digit 0, binary 111 is equivalent to octal 7, and so forth.

Octal Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Converting from octal to binary proceeds in the same fashion as it does for hexadecimal:

658 = 110 1012
178 = 001 1112

And from binary to octal:

1011002 = 101 1002 grouped = 548
100112 = 010 0112 grouped with padding = 238

And from octal to decimal:

658 = (6 × 81) + (5 × 80) = (6 × 8) + (5 × 1) = 5310
1278 = (1 × 82) + (2 × 81) + (7 × 80) = (1 × 64) + (2 × 8) + (7 × 1) = 8710

Representing real numbers

edit

Non-integers can be represented by using negative powers, which are set off from the other digits by means of a radix point (called a decimal point in the decimal system). For example, the binary number 11.012 means:

1 × 21 (1 × 2 = 2) plus
1 × 20 (1 × 1 = 1) plus
0 × 2?1 (0 × 1?2 = 0) plus
1 × 2?2 (1 × 1?4 = 0.25)

For a total of 3.25 decimal.

All dyadic rational numbers   have a terminating binary numeral—the binary representation has a finite number of terms after the radix point. Other rational numbers have binary representation, but instead of terminating, they recur, with a finite sequence of digits repeating indefinitely. For instance

   

The phenomenon that the binary representation of any rational is either terminating or recurring also occurs in other radix-based numeral systems. See, for instance, the explanation in decimal. Another similarity is the existence of alternative representations for any terminating representation, relying on the fact that 0.111111... is the sum of the geometric series 2?1 + 2?2 + 2?3 + ... which is 1.

Binary numerals that neither terminate nor recur represent irrational numbers. For instance,

  • 0.10100100010000100000100... does have a pattern, but it is not a fixed-length recurring pattern, so the number is irrational
  • 1.0110101000001001111001100110011111110... is the binary representation of  , the square root of 2, another irrational. It has no discernible pattern.

See also

edit

References

edit
  1. ^ "3.3. Binary and Its Advantages — CS160 Reader". computerscience.chemeketa.edu. Retrieved 22 May 2024.
  2. ^ Robson, Eleanor; Stedall, Jacqueline, eds. (2009), "Myth No. 2: the Horus eye fractions", The Oxford Handbook of the History of Mathematics, Oxford University Press, p. 790, ISBN 9780199213122
  3. ^ Chrisomalis, Stephen (2010), Numerical Notation: A Comparative History, Cambridge University Press, pp. 42–43, ISBN 9780521878180.
  4. ^ Rudman, Peter Strom (2007), How Mathematics Happened: The First 50,000 Years, Prometheus Books, pp. 135–136, ISBN 9781615921768.
  5. ^ a b Edward Hacker; Steve Moore; Lorraine Patsco (2002). I Ching: An Annotated Bibliography. Routledge. p. 13. ISBN 978-0-415-93969-0.
  6. ^ a b Redmond, Geoffrey; Hon, Tze-Ki (2014). Teaching the I Ching. Oxford University Press. p. 227. ISBN 978-0-19-976681-9.
  7. ^ a b Jonathan Shectman (2003). Groundbreaking Scientific Experiments, Inventions, and Discoveries of the 18th Century. Greenwood Publishing. p. 29. ISBN 978-0-313-32015-6.
  8. ^ Marshall, Steve. "Yijing hexagram sequences: The Shao Yong square (Fuxi sequence)". Retrieved 15 September 2022. You could say [the Fuxi binary sequence] is a more sensible way of rendering hexagram as binary numbers ... The reasoning, if any, that informs [the King Wen] sequence is unknown.
  9. ^ Zhonglian, Shi; Wenzhao, Li; Poser, Hans (2000). Leibniz' Binary System and Shao Yong's "Xiantian Tu" in :Das Neueste über China: G.W. Leibnizens Novissima Sinica von 1697 : Internationales Symposium, Berlin 4. bis 7. Oktober 1997. Stuttgart: Franz Steiner Verlag. pp. 165–170. ISBN 3515074481.
  10. ^ Collins, Derek (2008). "Mapping the Entrails: The Practice of Greek Hepatoscopy". The American Journal of Philology. 129 (3): 319–345. ISSN 0002-9475. JSTOR 27566714.
  11. ^ Johnston, Sarah Iles (2008). Ancient Greek divination. Blackwell ancient religions (1. publ ed.). Malden, Mass.: Wiley-Blackwell. ISBN 978-1-4051-1573-5.
  12. ^ Sanchez, Julio; Canton, Maria P. (2007). Microcontroller programming: the microchip PIC. Boca Raton, Florida: CRC Press. p. 37. ISBN 978-0-8493-7189-9.
  13. ^ W. S. Anglin and J. Lambek, The Heritage of Thales, Springer, 1995, ISBN 0-387-94544-X
  14. ^ Math for Poets and Drummers Archived 16 June 2012 at the Wayback Machine (pdf, 145KB)
  15. ^ Stakhov, Alexey; Olsen, Scott Anthony (2009). The mathematics of harmony: from Euclid to contemporary mathematics and computer science. World Scientific. ISBN 978-981-277-582-5.
  16. ^ B. van Nooten, "Binary Numbers in Indian Antiquity", Journal of Indian Studies, Volume 21, 1993, pp. 31–50
  17. ^ Landry, Timothy R. (2019). Vodún: secrecy and the search for divine power. Contemporary ethnography (1st ed.). Philadelphia: University of Pennsylvania Press. p. 25. ISBN 978-0-8122-5074-9.
  18. ^ Landry 2019, p. 154.
  19. ^ "Ifa Divination System". Retrieved 5 July 2017.
  20. ^ Bender, Andrea; Beller, Sieghard (16 December 2013). "Mangarevan invention of binary steps for easier calculation". Proceedings of the National Academy of Sciences. 111 (4): 1322–1327. doi:10.1073/pnas.1309160110. PMC 3910603. PMID 24344278.
  21. ^ Bowern, Claire; Zentz, Jason (2012). "Diversity in the Numeral Systems of Australian Languages". Anthropological Linguistics. 54 (2): 133–160. ISSN 0003-5483. JSTOR 23621076.
  22. ^ (see Bonner 2007 [1] Archived 3 April 2014 at the Wayback Machine, Fidora et al. 2011 [2] Archived 8 April 2019 at the Wayback Machine)
  23. ^ a b Bacon, Francis (1605). "The Advancement of Learning". London. pp. Chapter 1.
  24. ^ Shirley, John W. (1951). "Binary numeration before Leibniz". American Journal of Physics. 19 (8): 452–454. Bibcode:1951AmJPh..19..452S. doi:10.1119/1.1933042.
  25. ^ Ineichen, R. (2008). "Leibniz, Caramuel, Harriot und das Dualsystem" (PDF). Mitteilungen der deutschen Mathematiker-Vereinigung (in German). 16 (1): 12–15. doi:10.1515/dmvm-2008-0009. S2CID 179000299.
  26. ^ a b c Strickland, Lloyd (2020), Sriraman, Bharath (ed.), "Leibniz on Number Systems", Handbook of the History and Philosophy of Mathematical Practice, Cham: Springer International Publishing, pp. 1–31, doi:10.1007/978-3-030-19071-2_90-1, ISBN 978-3-030-19071-2, retrieved 20 August 2024
  27. ^ a b Leibniz G., Explication de l'Arithmétique Binaire, Die Mathematische Schriften, ed. C. Gerhardt, Berlin 1879, vol.7, p.223; Engl. transl.[3]
  28. ^ "Bouvet and Leibniz: A Scholarly Correspondence", Swiderski 1980
  29. ^ Leibniz: "The Chinese lost the meaning of the Cova or Lineations of Fuxi, perhaps more than a thousand years ago, and they have written commentaries on the subject in which they have sought I know not what far out meanings, so that their true explanation now has to come from Europeans. Here is how: It was scarcely more than two years ago that I sent to Reverend Father Bouvet,3 the celebrated French Jesuit who lives in Peking, my method of counting by 0 and 1, and nothing more was required to make him recognize that this was the key to the figures of Fuxi. Writing to me on 14 November 1701, he sent me this philosophical prince's grand figure, which goes up to 64, and leaves no further room to doubt the truth of our interpretation, such that it can be said that this Father has deciphered the enigma of Fuxi, with the help of what I had communicated to him. And as these figures are perhaps the most ancient monument of [GM VII, p227] science which exists in the world, this restitution of their meaning, after such a great interval of time, will seem all the more curious."
  30. ^ Aiton, Eric J. (1985). Leibniz: A Biography. Taylor & Francis. pp. 245–8. ISBN 0-85274-470-6.
  31. ^ a b J.E.H. Smith (2008). Leibniz: What Kind of Rationalist?: What Kind of Rationalist?. Springer. p. 415. ISBN 978-1-4020-8668-7.
  32. ^ Yuen-Ting Lai (1998). Leibniz, Mysticism and Religion. Springer. pp. 149–150. ISBN 978-0-7923-5223-5.
  33. ^ Boole, George (2009) [1854]. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities (Macmillan, Dover Publications, reprinted with corrections [1958] ed.). New York: Cambridge University Press. ISBN 978-1-108-00153-3.
  34. ^ Shannon, Claude Elwood (1940). A symbolic analysis of relay and switching circuits (Thesis). Cambridge: Massachusetts Institute of Technology. hdl:1721.1/11173.
  35. ^ "National Inventors Hall of Fame – George R. Stibitz". 20 August 2008. Archived from the original on 9 July 2010. Retrieved 5 July 2010.
  36. ^ "George Stibitz : Bio". Math & Computer Science Department, Denison University. 30 April 2004. Retrieved 5 July 2010.
  37. ^ "Pioneers – The people and ideas that made a difference – George Stibitz (1904–1995)". Kerry Redshaw. 20 February 2006. Retrieved 5 July 2010.
  38. ^ "George Robert Stibitz – Obituary". Computer History Association of California. 6 February 1995. Retrieved 5 July 2010.
  39. ^ Rojas, Raúl (April–June 1997). "Konrad Zuse's Legacy: The Architecture of the Z1 and Z3" (PDF). IEEE Annals of the History of Computing. 19 (2): 5–16. doi:10.1109/85.586067. Archived (PDF) from the original on 3 July 2022. Retrieved 3 July 2022. (12 pages)
  40. ^ "Introducing binary – Revision 1 – GCSE Computer Science". BBC. Retrieved 26 June 2019.
  41. ^ a b Küveler, Gerd; Schwoch, Dietrich (2013) [1996]. Arbeitsbuch Informatik – eine praxisorientierte Einführung in die Datenverarbeitung mit Projektaufgabe (in German). Vieweg-Verlag, reprint: Springer-Verlag. doi:10.1007/978-3-322-92907-5. ISBN 978-3-528-04952-2. 9783322929075.
  42. ^ a b Küveler, Gerd; Schwoch, Dietrich (4 October 2007). Informatik für Ingenieure und Naturwissenschaftler: PC- und Mikrocomputertechnik, Rechnernetze (in German). Vol. 2 (5 ed.). Vieweg, reprint: Springer-Verlag. ISBN 978-3834891914. 9783834891914.
  43. ^ "Base System". Archived from the original on 23 October 2017. Retrieved 31 August 2016.
edit
胃胀打嗝是什么原因 审美观是什么意思 甲状腺弥漫性病变是什么意思 wendy什么意思 淋巴结肿大看什么科室最好
幸灾乐祸什么意思 益生菌什么时间吃最好 肠癌是什么症状 rock什么意思 心肌炎是什么病严重吗
人什么什么事的成语 艾灸是什么意思 满月送孩子什么礼物好 小孩子发烧抽搐是什么原因 扁桃体发炎喉咙痛吃什么药
血脂高不能吃什么食物 结婚是什么意思 初一的月亮是什么形状 柏拉图爱情是什么意思 补钙吃什么食物
卖什么小吃简单挣钱hcv9jop2ns7r.cn 稀释是什么意思hebeidezhi.com 牙齿什么时候换完weuuu.com 什么是钼靶检查hcv9jop3ns3r.cn 乘风破浪的意思是什么hcv9jop2ns1r.cn
钢铁侠是什么意思hcv9jop2ns4r.cn 一级军士长相当于什么级别hcv8jop2ns9r.cn 殊胜是什么意思xinmaowt.com 乳腺增生吃什么药最好sanhestory.com 鼻窦炎是什么原因引起的呢hcv7jop4ns6r.cn
分野是什么意思hcv8jop3ns3r.cn 梦见别人拉屎是什么意思hkuteam.com 五个月的宝宝能吃什么辅食xjhesheng.com 猫腻是什么意思hcv9jop6ns5r.cn 血糖高是什么原因hcv9jop1ns0r.cn
膀胱癌早期是什么症状hcv8jop9ns6r.cn 揣测是什么意思hcv8jop0ns6r.cn 跑马了是什么意思hcv8jop1ns1r.cn 蛋疼是什么原因引起的hcv9jop2ns3r.cn 耳朵有回音是什么原因hcv9jop7ns2r.cn
百度