硬脂酸是什么| 什么是木薯粉| 地中海贫血是什么意思| 小猫的尾巴有什么作用| 夏天的诗句有什么| 酸辣粉是什么粉| 来大姨妈喝酒有什么影响| 胆囊炎看什么科室| 嗓子沙哑是什么原因| 鸡蛋和什么不能一起吃| 便秘和腹泻交替出现是什么意思| 挑眉是什么意思| 为什么困但是睡不着| 为什么怀孕会孕酮低| 女人下面水多是什么原因| 河南专升本考什么| 玛咖是什么| 倒卖是什么意思| 打饱嗝是什么原因| 头发掉是什么原因引起的| mastercard是什么意思| 世界上最大的湖是什么湖| 扁平苔藓是什么病| 女性为什么会感染hpv| 梦见西红柿是什么预兆| 吃猪肝有什么好处和坏处| 急的什么| 32岁属什么生肖| 十一月份属于什么星座| 一单一双眼皮叫什么眼| ur是什么缩写| 百合花代表什么意思| 带状疱疹不能吃什么食物| 老鼠的尾巴有什么作用| 验尿细菌高是什么原因| xy是什么意思| 汪星是什么意思| 联字五行属什么| 叶子像什么| 打豆豆什么意思| 110斤穿什么码衣服| kys什么意思| 甘油是什么成分| 2月6号是什么星座| 投诚是什么意思| 153是什么意思| 卵泡期是什么意思| 月经推迟一个月不来什么原因| 榴莲什么样的好| 目翳是什么意思| 后背疼是什么原因引起的女性| jdv是什么牌子| 布洛芬0.3和0.4g有什么区别| 胃泌素偏低是什么原因| 10.21是什么星座| 房速是什么意思| 木棉花什么时候开花| 七月十五有什么禁忌| 庸医是什么意思| 在什么地方| 男人阳虚吃什么药最好| 河粉是什么| 马标志的车是什么牌子| 帕金森是什么引起的| 得了阴虱用什么药能除根| 桑枝是什么| 洋葱不能和什么食物一起吃| 中暑吃什么好| 肾虚什么症状| 代偿是什么意思| 女人喝什么茶对身体好| 什么是匝道图片| 梳子什么材质的好| 活检是什么检查| 抗凝血是什么意思| 钟表挂在客厅什么位置好| 不射精是什么原因| 男人吃什么| 房颤是什么原因引起的| 什么是沉香| 梦游为什么不能叫醒| 香精是什么| 下压高是什么原因引起的| 宝宝惊跳反射什么时候消失| 送什么礼物给女老师| 小米是什么| igg阳性是什么意思| 男人吃叶酸片有什么好处| 党参长什么样子| 笑气是什么| 擦汗表情是什么意思| 肺部做什么检查最准确| 为什么老是掉头发| 霉菌性阴道炎是什么原因引起的| vain是什么意思| 坚强后盾是什么意思| 离婚都需要什么| 什么样的心情| 人心惶惶是什么意思| 拉屎发黑是什么原因| 教师节属什么生肖| 什么年马月| 梦见捡了好多钱是什么预兆| 飞机杯是什么东西| 敏使朗是什么药| 新生儿痤疮用什么药膏| 促黄体生成素低说明什么| dw手表属于什么档次| 花木兰姓什么| 虎都男装属于什么档次| cd什么意思| 喉咙痛吃什么饭菜好| 直升是什么意思| 悲智双运什么意思| 吃什么可以止咳化痰| 脑梗有什么前兆| 融字五行属什么| kkkk是什么意思| 去韩国需要办理什么手续| 大骨节病是一种什么病| 肠道功能紊乱吃什么药效果好| mt是什么缩写| 乳清粉是什么东西| 移动增值业务费是什么| 粉是什么做的| 类风湿和风湿有什么区别| 什么蓝牙耳机好| 阿奇霉素和头孢有什么区别| 男人后背有痣代表什么| nfl是什么意思| 吃完饭就想吐是什么原因| 肝钙化灶是什么意思| 吃什么肉不会胖又减肥| 宁静是什么民族| 湿罗音是什么意思| 南京大屠杀是什么时候| 阴道出血是什么原因引起的| 属鸡的贵人是什么属相| 嗓子肿痛吃什么药| cosplay是什么意思| 性生活过多有什么危害| 梦见酒是什么意思| 支原体感染吃什么药好| 话梅泡水喝有什么好处和坏处| 胆固醇偏高吃什么食物可以降胆固醇| 属羊的本命佛是什么佛| 虾仁不能和什么食物一起吃| 6月份出生是什么星座| 吉星高照是什么生肖| 腹泻吃什么药最好| 阴囊潮湿瘙痒用什么药| 什么的老虎| 水为什么会结冰| 脚底板脱皮是什么原因| 杨枝甘露是什么做的| 吃什么瘦肚子最快| 胰岛素为什么不能口服| ak是什么意思| 艾滋病检查什么项目| 为什么牙缝里的东西很臭| 边鱼是什么鱼| 老梗是什么意思| caluola手表是什么牌子| 一夜白头是什么原因| 检查乳房挂什么科| o型血和什么血型最配| 劓刑是什么意思| 做梦梦到小孩子是什么意思| 鱼在鱼缸底部不动为什么| 为什么老是打喷嚏| 保卡是什么意思| 男性霉菌感染用什么药| 海鲜过敏吃什么药| 梦魇是什么| 橙子和橘子有什么区别| 右眼跳是什么预兆| 酥油是什么做的| 颈椎疼挂什么科| 蜗牛的触角有什么作用| 7月17什么星座| en是什么意思| 一个六一个允念什么| 活化是什么意思| 什么样的西瓜甜| 两性是什么意思| 拉屎擦屁股纸上有血什么原因| 酸中毒是什么意思| 做梦梦见大火是什么意思| vlone是什么牌子| 副科级是什么级别| 碟鱼是什么鱼| 什么是收缩压和舒张压| 梦见买白菜是什么意思| 白色车里放什么摆件好| 什么是数位板| 眼晴干涩模糊用什么药| 老年人嘴唇发紫是什么原因| 犹太是什么意思| 什么是抹茶| 纪梵希属于什么档次| 相害是什么意思| 天喜星是什么意思| 无水奶油是什么| 四个火念什么| 胃胀气是什么原因| 男性硬下疳是什么样子| 上善若水下一句是什么| 湿疹是什么皮肤病| aa是什么意思| 翌日什么意思| 摄人心魄是什么意思| 红颜什么意思| csk是什么品牌| 神经痛吃什么药| 为什么同房会有刺痛感| 王源粉丝叫什么| 猫怕什么气味| 身份证末尾x代表什么| 桑榆是什么意思| 发心是什么意思| 普洱茶什么牌子好| 水瓶座什么象| 四月八日是什么星座| 清心寡欲什么意思| 月泉读什么| 叉烧是什么肉做的| 拉肚子喝什么水| 帝舵手表什么档次| 头疼吃什么药最有效| 龋齿是什么样子的图片| 宫腔镜检查后需要注意什么| 1997年什么命| 手心朝上是什么意思| bic是什么意思| 胡萝卜不能和什么一起吃| 皮肤瘙痒吃什么药| 婆家是什么意思| 脉搏细是什么原因| 胃在什么位置| 食管反流吃什么药| 静脉血是什么颜色| 经常拉肚子是什么原因引起的| 审计署是什么级别| 息肉是什么| 肝内低密度影是什么意思| 罗红霉素和红霉素有什么区别| 电轴不偏是什么意思| 01年属什么的| pv是什么意思| 魂不守舍什么意思| 心火大吃什么能清火| 孩子拉肚子吃什么药| 螃蟹爱吃什么| 及什么意思| 芝柏手表什么档次| 早上不晨勃是什么原因| 骨灰盒什么材质的好| 折耳猫什么颜色最贵| 脑筋急转弯什么东西越洗越脏| 吃什么壮阳补肾| mia是什么意思| 整个手掌发红是什么原因| bl是什么单位| 为什么青霉素要做皮试| 百度

Cadence发布7纳米工艺Virtuoso先进工艺节点扩展平台

(Redirected from Maxima and minima)
百度 她说:人人皆知,“台独”毫无可能。

In mathematical analysis, the maximum and minimum[a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum,[b] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.[1][2][3] Pierre de Fermat was one of the first mathematicians to propose a general technique, adequality, for finding the maxima and minima of functions.

Local and global maxima and minima for cos(3πx)/x, 0.1≤ x ≤1.1

As defined in set theory, the maximum and minimum of a set are the greatest and least elements in the set, respectively. Unbounded infinite sets, such as the set of real numbers, have no minimum or maximum.

In statistics, the corresponding concept is the sample maximum and minimum.

Definition

edit

A real-valued function f defined on a domain X has a global (or absolute) maximum point at x?, if f(x?) ≥ f(x) for all x in X. Similarly, the function has a global (or absolute) minimum point at x?, if f(x?) ≤ f(x) for all x in X. The value of the function at a maximum point is called the maximum value of the function, denoted ?, and the value of the function at a minimum point is called the minimum value of the function, (denoted ? for clarity). Symbolically, this can be written as follows:

? is a global maximum point of function ? if ?

The definition of global minimum point also proceeds similarly.

If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x?, if there exists some ε > 0 such that f(x?) ≥ f(x) for all x in X within distance ε of x?. Similarly, the function has a local minimum point at x?, if f(x?) ≤ f(x) for all x in X within distance ε of x?. A similar definition can be used when X is a topological space, since the definition just given can be rephrased in terms of neighbourhoods. Mathematically, the given definition is written as follows:

Let ? be a metric space and function ?. Then ? is a local maximum point of function ? if ? such that ?

The definition of local minimum point can also proceed similarly.

In both the global and local cases, the concept of a strict extremum can be defined. For example, x? is a strict global maximum point if for all x in X with xx?, we have f(x?) > f(x), and x? is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x? with xx?, we have f(x?) > f(x). Note that a point is a strict global maximum point if and only if it is the unique global maximum point, and similarly for minimum points.

A continuous real-valued function with a compact domain always has a maximum point and a minimum point. An important example is a function whose domain is a closed and bounded interval of real numbers (see the graph above).

edit

Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the boundary, and take the greatest (or least) one.

For differentiable functions, Fermat's theorem states that local extrema in the interior of a domain must occur at critical points (or points where the derivative equals zero).[4] However, not all critical points are extrema. One can often distinguish whether a critical point is a local maximum, a local minimum, or neither by using the first derivative test, second derivative test, or higher-order derivative test, given sufficient differentiability.[5]

For any function that is defined piecewise, one finds a maximum (or minimum) by finding the maximum (or minimum) of each piece separately, and then seeing which one is greatest (or least).

Examples

edit
?
The global maximum of xx occurs at x = e.
Function Maxima and minima
x2 Unique global minimum at x = 0.
x3 No global minima or maxima. Although the first derivative (3x2) is 0 at x = 0, this is an inflection point. (2nd derivative is 0 at that point.)
? Unique global maximum at x = e. (See figure at right)
x?x Unique global maximum over the positive real numbers at x = 1/e.
x3/3 ? x First derivative x2 ? 1 and second derivative 2x. Setting the first derivative to 0 and solving for x gives stationary points at ?1 and +1. From the sign of the second derivative, we can see that ?1 is a local maximum and +1 is a local minimum. This function has no global maximum or minimum.
|x| Global minimum at x = 0 that cannot be found by taking derivatives, because the derivative does not exist at x = 0.
cos(x) Infinitely many global maxima at 0, ±2π, ±4π, ..., and infinitely many global minima at ±π, ±3π, ±5π, ....
2 cos(x) ? x Infinitely many local maxima and minima, but no global maximum or minimum.
cos(3πx)/x with 0.1 ≤ x ≤ 1.1 Global maximum at x?= 0.1 (a boundary), a global minimum near x?= 0.3, a local maximum near x?= 0.6, and a local minimum near x?= 1.0. (See figure at top of page.)
x3 + 3x2 ? 2x + 1 defined over the closed interval (segment) [?4,2] Local maximum at x?= ?1?15/3, local minimum at x?= ?1+15/3, global maximum at x?= 2 and global minimum at x?= ?4.

For a practical example,[6] assume a situation where someone has ? feet of fencing and is trying to maximize the square footage of a rectangular enclosure, where ? is the length, ? is the width, and ? is the area:

?
?
?
?
?

The derivative with respect to ? is:

?

Setting this equal to ?

?
?
?

reveals that ? is our only critical point. Now retrieve the endpoints by determining the interval to which ? is restricted. Since width is positive, then ?, and since ?, that implies that ?. Plug in critical point ?, as well as endpoints ? and ?, into ?, and the results are ? and ? respectively.

Therefore, the greatest area attainable with a rectangle of ? feet of fencing is ?.[6]

Functions of more than one variable

edit
?
Peano surface, a counterexample to some criteria of local maxima of the 19th century
?
The global maximum is the point at the top
?
Counterexample: The red dot shows a local minimum that is not a global minimum

For functions of more than one variable, similar conditions apply. For example, in the (enlargeable) figure on the right, the necessary conditions for a local maximum are similar to those of a function with only one variable. The first partial derivatives as to z (the variable to be maximized) are zero at the maximum (the glowing dot on top in the figure). The second partial derivatives are negative. These are only necessary, not sufficient, conditions for a local maximum, because of the possibility of a saddle point. For use of these conditions to solve for a maximum, the function z must also be differentiable throughout. The second partial derivative test can help classify the point as a relative maximum or relative minimum. In contrast, there are substantial differences between functions of one variable and functions of more than one variable in the identification of global extrema. For example, if a bounded differentiable function f defined on a closed interval in the real line has a single critical point, which is a local minimum, then it is also a global minimum (use the intermediate value theorem and Rolle's theorem to prove this by contradiction). In two and more dimensions, this argument fails. This is illustrated by the function

?

whose only critical point is at (0,0), which is a local minimum with f(0,0)?=?0. However, it cannot be a global one, because f(2,3)?=??5.

Maxima or minima of a functional

edit

If the domain of a function for which an extremum is to be found consists itself of functions (i.e. if an extremum is to be found of a functional), then the extremum is found using the calculus of variations.

In relation to sets

edit

Maxima and minima can also be defined for sets. In general, if an ordered set S has a greatest element m, then m is a maximal element of the set, also denoted as ?. Furthermore, if S is a subset of an ordered set T and m is the greatest element of S with (respect to order induced by T), then m is a least upper bound of S in T. Similar results hold for least element, minimal element and greatest lower bound. The maximum and minimum function for sets are used in databases, and can be computed rapidly, since the maximum (or minimum) of a set can be computed from the maxima of a partition; formally, they are self-decomposable aggregation functions.

In the case of a general partial order, a least element (i.e., one that is less than all others) should not be confused with the minimal element (nothing is lesser). Likewise, a greatest element of a partially ordered set (poset) is an upper bound of the set which is contained within the set, whereas the maximal element m of a poset A is an element of A such that if mb (for any b in A), then m = b. Any least element or greatest element of a poset is unique, but a poset can have several minimal or maximal elements. If a poset has more than one maximal element, then these elements will not be mutually comparable.

In a totally ordered set, or chain, all elements are mutually comparable, so such a set can have at most one minimal element and at most one maximal element. Then, due to mutual comparability, the minimal element will also be the least element, and the maximal element will also be the greatest element. Thus in a totally ordered set, we can simply use the terms minimum and maximum.

If a chain is finite, then it will always have a maximum and a minimum. If a chain is infinite, then it need not have a maximum or a minimum. For example, the set of natural numbers has no maximum, though it has a minimum. If an infinite chain S is bounded, then the closure Cl(S) of the set occasionally has a minimum and a maximum, in which case they are called the greatest lower bound and the least upper bound of the set S, respectively.

Argument of the maximum

edit
?
As an example, both unnormalised and normalised sinc functions above have ? of {0} because both attain their global maximum value of 1 at x?=?0.

The unnormalised sinc function (red) has arg min of {?4.49,?4.49}, approximately, because it has 2 global minimum values of approximately ?0.217 at x?=?±4.49. However, the normalised sinc function (blue) has arg min of {?1.43,?1.43}, approximately, because their global minima occur at x?=?±1.43, even though the minimum value is the same.[7]
In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a function output value is maximized and minimized, respectively.[8] While the arguments are defined over the domain of a function, the output is part of its codomain.

See also

edit

Notes

edit
  1. ^ PL: maxima and minima (or maximums and minimums).
  2. ^ PL: extrema.

References

edit
  1. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th?ed.). Brooks/Cole. ISBN?978-0-495-01166-8.
  2. ^ Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th?ed.). Brooks/Cole. ISBN?978-0-547-16702-2.
  3. ^ Thomas, George B.; Weir, Maurice D.; Hass, Joel (2010). Thomas' Calculus: Early Transcendentals (12th?ed.). Addison-Wesley. ISBN?978-0-321-58876-0.
  4. ^ Weisstein, Eric W. "Minimum". mathworld.wolfram.com. Retrieved 2025-08-14.
  5. ^ Weisstein, Eric W. "Maximum". mathworld.wolfram.com. Retrieved 2025-08-14.
  6. ^ a b Garrett, Paul. "Minimization and maximization refresher".
  7. ^ "The Unnormalized Sinc Function Archived 2025-08-14 at the Wayback Machine", University of Sydney
  8. ^ For clarity, we refer to the input (x) as points and the output (y) as values; compare critical point and critical value.
edit
平步青云什么意思 炼蜜是什么 1870年是什么朝代 什么是好人 错构瘤是什么意思
土命是什么意思 端游什么意思 什么的快乐 椰果是什么做的 藜麦是什么
欺世盗名是什么意思 杨紫属什么生肖 hr医学上什么意思 边界欠清是什么意思 神态自若是什么意思
hcd是什么意思 look是什么意思 乳糖不耐受喝什么奶粉 牙齿突然出血是什么原因 孔雀翎是什么东西
做什么生意好挣钱hcv8jop3ns9r.cn 馥字五行属什么xinjiangjialails.com 加持是什么意思hcv9jop2ns5r.cn 三三两两是什么生肖wuhaiwuya.com 心力衰竭吃什么药最好hcv9jop3ns0r.cn
英雄的动物是什么生肖hanqikai.com 什么是类风湿性关节炎hcv8jop0ns4r.cn 什么叫水印hcv7jop5ns0r.cn 贡中毒有什么症状hcv8jop3ns5r.cn 什么防晒霜好用hcv9jop7ns5r.cn
甲状腺有什么作用hcv8jop3ns8r.cn 杞人忧天是什么故事hcv9jop7ns2r.cn 肩胛骨疼痛是什么原因hcv9jop6ns7r.cn 引什么大什么hcv9jop3ns0r.cn 女性私处长什么样hcv7jop7ns4r.cn
强化是什么意思hcv8jop0ns0r.cn 什么情况下要做肌电图hcv9jop2ns5r.cn mra是什么牌子0735v.com 韭菜不能和什么一起吃hcv8jop6ns1r.cn 凉粉果什么时候成熟cl108k.com
百度