老年人缺钾吃什么好| 无痕是什么意思| 玑是什么意思| 晨咳是什么原因引起的| 扁平足有什么危害| 尿比重偏低是什么原因| 去湿气喝什么好| 血小板低会出现什么症状| 做梦抓到很多鱼是什么征兆| 接下来有什么节日| 价值连城是什么意思| 梦见谈恋爱很甜蜜是什么意思| mechrevo是什么牌子的电脑| 新白娘子传奇许仙为什么用女的演| 下雨天适合穿什么衣服| 谭咏麟属什么生肖| 男性内分泌失调有什么症状| 蛇酒不是三十九开什么| 上什么环最好最安全伤害小| 嗓子上火吃什么药| 黑科技是什么意思| 做梦哭醒了有什么征兆| 奥氮平片是什么药| xo什么意思| 什么时间量血压最准确| 梦到蛇是什么意思周公解梦| 翻糖蛋糕是什么意思| 脑科属于什么科| 神经肌电图检查什么| 禁锢是什么意思| 空调自动关机什么原因| 九条鱼代表什么意思| 红细胞数目偏高是什么意思| 心如所愿的意思是什么| 朋友越来越少暗示什么| 狗的尾巴有什么作用| 定妆喷雾什么时候用| 羊和什么相冲| 真知灼见什么意思| 剪刀是什么生肖| 碧螺春属于什么茶| 阁楼是什么意思| 接触性皮炎用什么药| 澳门使用什么货币| 用什么泡水喝可以降血压| 美尼尔综合征是什么原因引起的| 以逸待劳是什么意思| 虹吸是什么意思| 什么食物含钾多| 喝咖啡有什么好处和坏处| 大姨父是什么意思| 护士一般是什么学历| 1936年中国发生了什么| 白带带血是什么原因| 馒头吃多了有什么坏处| 3月是什么星座的| 红豆配什么打豆浆好喝| 脾脏结节一般是什么病| 吃什么肝脏排毒| 芨芨草长什么样图片| 鱼什么而什么| 绿色衣服搭配什么颜色的裤子| 肝气不舒吃什么中成药| 婧字五行属什么| 语迟则人贵是什么意思| 腰间盘突出压迫神经腿疼吃什么药| 中国民间为什么要吃腊八粥| 治疗阴虱子用什么药最好| 生吃苦瓜有什么好处和坏处| 纳氏囊肿是什么意思| 鸡眼长什么样子| 笑气是什么气体| 麻油是什么| 舌头口腔溃疡是什么原因引起的| 四个日念什么| 免冠照片是什么意思| 骨骼肌是什么意思| 鼻基底填充用什么材料比较好| 正太是什么意思| 毛手毛脚什么意思| 什么叫市级以上医院| 丁克是什么| 磨盘有什么风水说法| 男生下体痒是什么原因| 唐僧姓什么| 安吉白茶属于什么茶类| 儿童去火吃什么药| 2018年属什么生肖| 膀胱炎吃什么药最见效| 手麻是什么病| 花苞裤不适合什么人穿| 蜂蜜水什么时候喝比较好| 谷丙转氨酶是检查什么的| 总感觉自己有病是什么心理病| 多字五行属什么| hennessy是什么酒价格多少| 橙子和橘子有什么区别| 纯净水和矿泉水有什么区别| 跌打损伤用什么药最好| 什么是单核细胞百分比| 什么的夕阳| redline是什么牌子| 梦见自己家盖房子是什么预兆| 白什么什么| 白介素高说明什么| 宫腔内囊性回声是什么意思| 什么蓝牙耳机好| 正常的尿液是什么颜色| 湿疹为什么要查肝功能| 桦树茸有什么作用| 无利不起早是什么意思| 龟头炎有什么症状| 什么方法不掉头发| yy飞机票是什么| 三庭五眼是什么意思| 为什么大医院不用宫腔镜人流| 感冒咳嗽吃什么药好| 群众路线是什么| 成人礼是什么意思| 加号是什么意思| 吉士粉是什么东西| 骨龄是什么意思| 救济的近义词是什么| design是什么牌子| 人工肝是什么意思| 发烧酒精擦什么部位| 化痰止咳吃什么药最好| 五月十七是什么星座| 拿手机手抖是什么原因| 梦见和老公吵架是什么意思| 咳嗽想吐是什么原因| 尿频尿不尽吃什么药| 刑事拘留意味着什么| 嘴甜是什么原因| 胆红素高有什么症状| 弥陀是什么意思| 青豆是什么豆| 君无戏言什么意思| 什么蜂蜜好| hrv是什么| 鳞状上皮增生什么意思| 桑葚泡酒有什么功效| 葛优躺是什么意思| 十月十五号是什么星座| 喝什么酒对身体好| 为什么会胰岛素抵抗| 阴道干涩是什么原因| 玫瑰花茶和什么搭配好| 月经前几天是什么期| 夜间抽搐的原因是什么| 梦见自己得了绝症预示着什么| 廉航是什么意思| 远字五行属什么| 剔除是什么意思| 高校新生是什么意思| 88年属什么生肖| 碱性磷酸酶高是什么病| 槊是什么意思| 背部爱出汗是什么原因| 大蒜吃多了有什么坏处| 上面一个山下面一个今读什么| 春雨绵绵是什么生肖| 茶鱼是什么鱼| 白目是什么意思| 脸黑的人适合穿什么颜色的衣服| 旁支是什么意思| 血脂高吃什么药效果好| 为什么空腹血糖比餐后血糖高| 肠镜检查挂什么科室| 割包为什么很多人后悔| 非礼什么意思| 升米恩斗米仇什么意思| 吃完饭就犯困是什么原因| 米粉是用什么做出来的| 肝阴不足吃什么中成药| 宫腔内囊性结构是什么意思| 子宫粘连是什么原因造成的| 督察是什么意思| 吃了火龙果不能吃什么| c反应蛋白偏高说明什么| 嘴巴干是什么原因| 肉桂粉是什么做的| 什么是肺炎| 办理社保卡需要什么资料| 什么的态度| 三月初一是什么星座| 拉杆箱什么材质好| 十二指肠炎吃什么药| 洁面膏和洗面奶有什么区别| 吃什么解酒| 五个月宝宝吃什么辅食最好| conch是什么牌子| 宋江是一个什么样的人| 血热是什么症状| rt是什么单位| 图灵是什么意思| udv女鞋是什么牌子| 缴费基数是什么意思| 点痣后用什么修复最好| 什么的草叶| 湿气太重吃什么排湿最快| 虫至念什么| 口是什么感觉| 头晕吃什么可以缓解| cima是什么证书| 什么东西抗衰老最好| 什么的眼睛填空| 6月16日什么星座| 女性经常手淫有什么危害| 碉堡是什么意思啊| 维生素b9是什么| 梦见剪头发是什么意思| 宇字属于五行属什么| 鱼精是什么| 脚心发麻是什么原因引起的| 复苏是什么意思| 谁也不知道下一秒会发生什么| 口腔溃疡什么原因| 歧视是什么意思| 冰箱保鲜室不制冷是什么原因| db是什么| 李商隐是什么朝代的| 福星贵人是什么意思| 勺是什么意思| 子宫发炎是什么原因引起的| 耳石症是什么症状| 乳腺4a类是什么意思| 幻听一般会听到什么| 凤凰代表什么生肖| 三头六臂指什么生肖| 子宫瘢痕憩室是什么病| 什么叫造口| torch什么意思| 顺手牵羊是什么生肖| 胃炎吃什么消炎药| 五月十九日是什么星座| 什么是终端| 电解质是什么意思| 电解质氯高是什么原因| 手脱皮是什么原因引起的| 单核细胞偏高说明什么| 睡不着觉去医院挂什么科| 疤痕憩室是什么意思| 手指关节疼痛用什么药| 迪拜为什么那么有钱| 任达华属什么生肖| 爵是什么器皿| 喝酒胃出血吃什么药| 肝火旺是什么症状| 乳晕是什么| 吃什么对睡眠好| 伶字五行属什么| 培根是什么肉做的| 11月17号是什么星座| 什么息| 厥阴病是什么意思| 抗炎和消炎有什么区别| 九夫痣是什么意思| 男人割了皮包什么样子| 粉红粉红的什么| 反流性咽喉炎吃什么药最好| 血液为什么是红色| 失独是什么意思| iga肾病是什么意思| 百度

以儒学精华铸商道灵魂 博鳌儒商论坛年会召开

百度 今晚,广东队以118比94轻取卫冕冠军新疆队,以总比分3比1挺进半决赛,年轻的小将赵睿攻守两端均有上佳表现,全场砍下全队第二高的28分,并贡献并列全场第一的四次抢断。

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

Layout for the silicon implementation of a six transistor SRAM memory cell

Over the history of computing, different memory cell architectures have been used, including core memory and bubble memory. Today[as of?], the most common memory cell architecture is MOS memory, which consists of metal–oxide–semiconductor (MOS) memory cells. Modern random-access memory (RAM) uses MOS field-effect transistors (MOSFETs) as flip-flops, along with MOS capacitors for certain types of RAM.

The SRAM (static RAM) memory cell is a type of flip-flop circuit, typically implemented using MOSFETs. These require very low power to maintain the stored value when not being accessed. A second type, DRAM (dynamic RAM), is based on MOS capacitors. Charging and discharging a capacitor can store either a '1' or a '0' in the cell. However, since the charge in the capacitor slowly dissipates, it must be refreshed periodically. Due to this refresh process, DRAM consumes more power, but it can achieve higher storage densities.

Most non-volatile memory (NVM), on the other hand, is based on floating-gate memory cell architectures. Non-volatile memory technologies such as EPROM, EEPROM, and flash memory utilize floating-gate memory cells, which rely on floating-gate MOSFET transistors.

Description

edit

The memory cell is the fundamental building block of memory. It can be implemented using different technologies, such as bipolar, MOS, and other semiconductor devices. It can also be built from magnetic material such as ferrite cores or magnetic bubbles.[1] Regardless of the implementation technology used, the purpose of the binary memory cell is always the same. It stores one bit of binary information that can be accessed by reading the cell and it must be set to store a 1 and reset to store a 0.[2]

Significance

edit
 
Square array of DRAM memory cells being read

Logic circuits without memory cells are called combinational, meaning the output depends only on the present input. But memory is a key element of digital systems. In computers, it allows to store both programs and data and memory cells are also used for temporary storage of the output of combinational circuits to be used later by digital systems. Logic circuits that use memory cells are called sequential circuits, meaning the output depends not only on the present input, but also on the history of past inputs. This dependence on the history of past inputs makes these circuits stateful and it is the memory cells that store this state. These circuits require a timing generator or clock for their operation.[3]

Computer memory used in most contemporary computer systems is built mainly out of DRAM cells; since the layout is much smaller than SRAM, it can be more densely packed yielding cheaper memory with greater capacity. Since the DRAM memory cell stores its value as the charge of a capacitor, and there are current leakage issues, its value must be constantly rewritten. This is one of the reasons that make DRAM cells slower than the larger SRAM (static RAM) cells, which has its value always available. That is the reason why SRAM memory is used for on-chip cache included in modern microprocessor chips.[4]

History

edit
 
32x32 core memory plane storing 1024 bits of data

On December 11, 1946 Freddie Williams applied for a patent on his cathode-ray tube (CRT) storing device (Williams tube) with 128 40-bit words. It was operational in 1947 and is considered the first practical implementation of random-access memory (RAM).[5] In that year, the first patent applications for magnetic-core memory were filed by Frederick Viehe.[6][7] Practical magnetic-core memory was developed by An Wang in 1948, and improved by Jay Forrester and Jan A. Rajchman in the early 1950s, before being commercialised with the Whirlwind computer in 1953.[8] Ken Olsen also contributed to its development.[9]

Semiconductor memory began in the early 1960s with bipolar memory cells, made of bipolar transistors. While it improved performance, it could not compete with the lower price of magnetic-core memory.[10]

MOS memory cells

edit
 
Intel 1103, a 1970 metal-oxide-semiconductor (MOS) dynamic random-access memory (DRAM) chip

In 1957, Frosch and Derick were able to manufacture the first silicon dioxide field effect transistors at Bell Labs, the first transistors in which drain and source were adjacent at the surface.[11] Subsequently, a team demonstrated a working MOSFET at Bell Labs 1960.[12][13] The invention of the MOSFET enabled the practical use of metal–oxide–semiconductor (MOS) transistors as memory cell storage elements, a function previously served by magnetic cores.[14]

The first modern memory cells were introduced in 1964, when John Schmidt designed the first 64-bit p-channel MOS (PMOS) static random-access memory (SRAM).[15][16]

SRAM typically has six-transistor cells, whereas DRAM (dynamic random-access memory) typically has single-transistor cells.[17][15] In 1965, Toshiba's Toscal BC-1411 electronic calculator used a form of capacitive bipolar DRAM, storing 180-bit data on discrete memory cells, consisting of germanium bipolar transistors and capacitors.[18][19] MOS technology is the basis for modern DRAM. In 1966, Robert H. Dennard at the IBM Thomas J. Watson Research Center was working on MOS memory. While examining the characteristics of MOS technology, he found it was capable of building capacitors, and that storing a charge or no charge on the MOS capacitor could represent the 1 and 0 of a bit, while the MOS transistor could control writing the charge to the capacitor. This led to his development of a single-transistor DRAM memory cell.[20] In 1967, Dennard filed a patent for a single-transistor DRAM memory cell, based on MOS technology.[21]

The first commercial bipolar 64-bit SRAM was released by Intel in 1969 with the 3101 Schottky TTL. One year later, it released the first DRAM integrated circuit chip, the Intel 1103, based on MOS technology. By 1972, it beat previous records in semiconductor memory sales.[22] DRAM chips during the early 1970s had three-transistor cells, before single-transistor cells became standard since the mid-1970s.[17][15]

CMOS memory was commercialized by RCA, which launched a 288-bit CMOS SRAM memory chip in 1968.[23] CMOS memory was initially slower than NMOS memory, which was more widely used by computers in the 1970s.[24] In 1978, Hitachi introduced the twin-well CMOS process, with its HM6147 (4 kb SRAM) memory chip, manufactured with a 3 μm process. The HM6147 chip was able to match the performance of the fastest NMOS memory chip at the time, while the HM6147 also consumed significantly less power. With comparable performance and much less power consumption, the twin-well CMOS process eventually overtook NMOS as the most common semiconductor manufacturing process for computer memory in the 1980s.[24]

The two most common types of DRAM memory cells since the 1980s have been trench-capacitor cells and stacked-capacitor cells.[25] Trench-capacitor cells are where holes (trenches) are made in a silicon substrate, whose side walls are used as a memory cell, whereas stacked-capacitor cells are the earliest form of three-dimensional memory (3D memory), where memory cells are stacked vertically in a three-dimensional cell structure.[26] Both debuted in 1984, when Hitachi introduced trench-capacitor memory and Fujitsu introduced stacked-capacitor memory.[25]

Floating-gate MOS memory cells

edit

The floating-gate MOSFET (FGMOS) was invented by Dawon Kahng and Simon Sze at Bell Labs in 1967.[27] They proposed the concept of floating-gate memory cells, using FGMOS transistors, which could be used to produce reprogrammable ROM (read-only memory).[28] Floating-gate memory cells later became the basis for non-volatile memory (NVM) technologies including EPROM (erasable programmable ROM), EEPROM (electrically erasable programmable ROM) and flash memory.[29]

Flash memory was invented by Fujio Masuoka at Toshiba in 1980.[30][31] Masuoka and his colleagues presented the invention of NOR flash in 1984,[32] and then NAND flash in 1987.[33] Multi-level cell (MLC) flash memory was introduced by NEC, which demonstrated quad-level cells in a 64 Mb flash chip storing 2-bit per cell in 1996.[25] 3D V-NAND, where flash memory cells are stacked vertically using 3D charge trap flash (CTP) technology, was first announced by Toshiba in 2007,[34] and first commercially manufactured by Samsung Electronics in 2013.[35][36]

Implementation

edit

The following schematics detail the three most used implementations for memory cells:

  • The dynamic random access memory cell (DRAM);
  • The static random access memory cell (SRAM);
  • Flip-flops like the J/K shown below, using only logic gates.
 
DRAM cell (1 transistor and one capacitor)
 
SRAM cell (6 transistors)
 
Clocked J/K flip-flop

Operation

edit

DRAM memory cell

edit
 
Die of the MT4C1024 (1994) integrating one-mebibit of DRAM memory cells

Storage

edit
The storage element of the DRAM memory cell is the capacitor labeled (4) in the diagram above. The charge stored in the capacitor degrades over time, so its value must be refreshed (read and rewritten) periodically. The nMOS transistor (3) acts as a gate to allow reading or writing when open or storing when closed.[37]

Reading

edit
For reading the Word line (2) drives a logic 1 (voltage high) into the gate of the nMOS transistor (3) which makes it conductive and the charge stored at the capacitor (4) is then transferred to the bit line (1). The bit line will have a parasitic capacitance (5) that will drain part of the charge and slow the reading process. The capacitance of the bit line will determine the needed size of the storage capacitor (4). It is a trade-off. If the storage capacitor is too small, the voltage of the bit line would take too much time to raise or not even rise above the threshold needed by the amplifiers at the end of the bit line. Since the reading process degrades the charge in the storage capacitor (4) its value is rewritten after each read.[38]

Writing

edit
The writing process is the easiest, the desired value logic 1 (high voltage) or logic 0 (low voltage) is driven into the bit line. The word line activates the nMOS transistor (3) connecting it to the storage capacitor (4). The only issue is to keep it open enough time to ensure that the capacitor is fully charged or discharged before turning off the nMOS transistor (3).[38]

SRAM memory cell

edit
 
SRAM memory cell depicting Inverter Loop as gates
 
An animated SR latch. Black and white mean logical '1' and '0', respectively.
(A) S = 1, R = 0: set
(B) S = 0, R = 0: hold
(C) S = 0, R = 1: reset
(D) S = 1, R = 1: not allowed
Transitioning from the restricted combination (D) to (A) leads to an unstable state.

Storage

edit
The working principle of SRAM memory cell can be easier to understand if the transistors M1 through M4 are drawn as logic gates. That way it is clear that at its heart, the cell storage is built by using two cross-coupled inverters. This simple loop creates a bi-stable circuit. A logic 1 at the input of the first inverter turns into a 0 at its output, and it is fed into the second inverter which transforms that logic 0 back to a logic 1 feeding back the same value to the input of the first inverter. That creates a stable state that does not change over time. Similarly the other stable state of the circuit is to have a logic 0 at the input of the first inverter. After being inverted twice it will also feedback the same value.[39]
Therefore there are only two stable states that the circuit can be in:
  •   = 0 and     = 1
  •   = 1 and     = 0

Reading

edit
To read the contents of the memory cell stored in the loop, the transistors M5 and M6 must be turned on. when they receive voltage to their gates from the word line ( ), they become conductive and so the   and     values get transmitted to the bit line ( ) and to its complement ( ).[39] Finally this values get amplified at the end of the bit lines.[39]

Writing

edit
The writing process is similar, the difference is that now the new value that will be stored in the memory cell is driven into the bit line ( ) and the inverted one into its complement ( ). Next transistors M5 and M6 are open by driving a logic 1 (voltage high) into the word line ( ). This effectively connects the bit lines to the by-stable inverter loop. There are two possible cases:
  1. If the value of the loop is the same as the new value driven, there is no change;
  2. if the value of the loop is different from the new value driven there are two conflicting values, in order for the voltage in the bit lines to overwrite the output of the inverters, the size of the M5 and M6 transistors must be larger than that of the M1-M4 transistors. This allows more current to flow through first ones and therefore tips the voltage in the direction of the new value, at some point the loop will then amplify this intermediate value to full rail.[39]

Flip-flop

edit

The flip-flop has many different implementations, its storage element is usually a latch consisting of a NAND gate loop or a NOR gate loop with additional gates used to implement clocking. Its value is always available for reading as an output. The value remains stored until it is changed through the set or reset process. Flip-flops are typically implemented using MOSFETs.

Floating gate

edit
 
A flash memory cell

Floating-gate memory cells, based on floating-gate MOSFETs, are used for most non-volatile memory (NVM) technologies, including EPROM, EEPROM and flash memory.[29] According to R. Bez and A. Pirovano:

A floating-gate memory cell is basically an MOS transistor with a gate completely surrounded by dielectrics (Fig. 1.2), the floating-gate (FG), and electrically governed by a capacitive-coupled control-gate (CG). Being electrically isolated, the FG acts as the storing electrode for the cell device. Charge injected into the FG is maintained there, allowing modulation of the ‘apparent’ threshold voltage (i.e. VT seen from the CG) of the cell transistor.[29]

See also

edit

References

edit
  1. ^ D. Tang, Denny; Lee, Yuan-Jen (2010). Magnetic memory: Fundamentals and technology. Cambridge University Press. p. 91. ISBN 978-1139484497. Retrieved 13 December 2015.
  2. ^ Fletcher, William (1980). An engineering approach to digital design. Prentice-Hall. p. 283. ISBN 0-13-277699-5.
  3. ^ Microelectronic circuits (Second ed.). Holt, Rinehart and Winston, Inc. 1987. p. 883. ISBN 0-03-007328-6.
  4. ^ "The technical question: the cache, how does it work?". PC World Fr (in French). Archived from the original on 30 March 2014.
  5. ^ O’Regan, Gerard (2013). Giants of computing: A compendium of select, pivotal pioneers. Springer. p. 267. ISBN 978-1447153405. Retrieved 13 December 2015.
  6. ^ Reilly, Edwin D. (2003). Milestones in computer science and information technology. Greenwood publishing group. p. 164. ISBN 9781573565219.
  7. ^ W. Pugh, Emerson; R. Johnson, Lyle; H. Palmer, John (1991). IBM's 360 and early 370 systems. MIT Press. p. 706. ISBN 0262161230. Retrieved 9 December 2015.
  8. ^ "1953: Whirlwind computer debuts core memory". Computer History Museum. Retrieved 2 August 2019.
  9. ^ Taylor, Alan (18 June 1979). Computerworld: Mass. Town has become computer capital. IDG Enterprise. p. 25.
  10. ^ "1966: Semiconductor RAMs serve high-speed storage needs". Computer History Museum. Retrieved 19 June 2019.
  11. ^ Frosch, C. J.; Derick, L (1957). "Surface Protection and Selective Masking during Diffusion in Silicon". Journal of the Electrochemical Society. 104 (9): 547. doi:10.1149/1.2428650.
  12. ^ KAHNG, D. (1961). "Silicon-Silicon Dioxide Surface Device". Technical Memorandum of Bell Laboratories: 583–596. doi:10.1142/9789814503464_0076. ISBN 978-981-02-0209-5. {{cite journal}}: ISBN / Date incompatibility (help)
  13. ^ Lojek, Bo (2007). History of Semiconductor Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. ISBN 978-3-540-34258-8.
  14. ^ "Transistors - an overview". ScienceDirect. Retrieved 8 August 2019.
  15. ^ a b c "1970: Semiconductors compete with magnetic cores". Computer history museum. Retrieved 19 June 2019.
  16. ^ Solid state design - vol. 6. Horizon house. 1965.
  17. ^ a b "Late 1960s: Beginnings of MOS memory" (PDF). Semiconductor history museum of Japan. 23 January 2019. Retrieved 27 June 2019.
  18. ^ "Spec sheet for Toshiba "TOSCAL" BC-1411". Old calculator web museum. Archived from the original on 3 July 2017. Retrieved 8 May 2018.
  19. ^ "Toshiba "Toscal" BC-1411 desktop calculator". Archived from the original on 20 May 2007.
  20. ^ "DRAM". IBM100. IBM. 9 August 2017. Retrieved 20 September 2019.
  21. ^ "Robert Dennard". Encyclop?dia Britannica. Retrieved 8 July 2019.
  22. ^ Kent, Allen; Williams, James G. (6 January 1992). Encyclopedia of microcomputers: volume 9 - Icon programming language to knowledge-based systems: APL techniques. CRC press. p. 131. ISBN 9780824727086.
  23. ^ "1963: Complementary MOS circuit configuration is invented". Computer history museum. Retrieved 6 July 2019.
  24. ^ a b "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor history museum of Japan. Archived (PDF) from the original on 5 July 2019. Retrieved 5 July 2019.
  25. ^ a b c "Memory". Semiconductor technology online (STOL). Retrieved 25 June 2019.
  26. ^ "1980s: DRAM capacity increases, the shift to CMOS advances, and Japan dominates the market" (PDF). Semiconductor history museum of Japan. Retrieved 19 July 2019.
  27. ^ Kahng, D.; Sze, S.M. (1967). "A floating-gate and its application to memory devices". The Bell System Technical Journal. 46 (6): 1288–95. doi:10.1002/j.1538-7305.1967.tb01738.x.
  28. ^ "1971: Reusable semiconductor ROM introduced". Computer history museum. Retrieved 19 June 2019.
  29. ^ a b c Bez, R.; Pirovano, A. (2019). Advances in non-volatile memory and storage technology. Woodhead Publishing. ISBN 9780081025857.
  30. ^ Fulford, Benjamin (24 June 2002). "Unsung hero". Forbes. Archived from the original on 3 March 2008. Retrieved 18 March 2008.
  31. ^ US 4531203  Fujio Masuoka
  32. ^ "Toshiba: Inventor of flash memory". Toshiba. Archived from the original on 20 June 2019. Retrieved 20 June 2019.
  33. ^ Masuoka, F.; Momodomi, M.; Iwata, Y.; Shirota, R. (1987). "New ultra high density EPROM and flash EEPROM with NAND structure cell". Electron Devices Meeting, 1987 International. IEDM 1987. IEEE. doi:10.1109/IEDM.1987.191485.
  34. ^ "Toshiba announces new "3D" NAND flash technology". Engadget. 12 June 2007. Retrieved 10 July 2019.
  35. ^ "Samsung introduces world's first 3D V-NAND based SSD for enterprise applications". Samsung semiconductor global website. Archived from the original on 15 April 2021.
  36. ^ Clarke, Peter (2013). "Samsung confirms 24 layers in 3D NAND". EE Times.
  37. ^ Jacob, Bruce; Ng, Spencer; Wang, David (28 July 2010). Memory systems: Cache, DRAM, disk. Morgan Kaufmann. p. 355. ISBN 9780080553849.
  38. ^ a b Siddiqi, Muzaffer A. (19 December 2012). Dynamic RAM: Technology advancements. CRC Press. p. 10. ISBN 9781439893739.
  39. ^ a b c d Li, Hai; Chen, Yiran (19 April 2016). Nonvolatile memory design: Magnetic, resistive, and phase change. CRC press. pp. 6, 7. ISBN 9781439807460.
鲁迅原名是什么 宝宝吐奶是什么原因引起的 凌驾是什么意思 虾仁炒什么菜好吃 为什么印度人叫阿三
心肌缺血做什么检查能查出来 玟字五行属什么 双插头是什么意思 吃什么水果可以通便 晚上吃什么好
卜留克是什么菜 da是什么单位 吃什么生发效果最好 途明是什么档次的包 历久弥新什么意思
十月十七是什么星座 ckmb是什么意思 铜钱癣用什么药 狗狗细小是什么症状 奶咖色是什么颜色
ky是什么520myf.com 为什么来月经会拉肚子hcv7jop6ns8r.cn ct 是什么hcv7jop4ns7r.cn 伞裙搭配什么上衣hcv9jop1ns4r.cn 为什么美国支持以色列hcv9jop1ns7r.cn
真太阳时是什么意思hcv7jop6ns0r.cn burberry是什么品牌bfb118.com 金刚是什么树的种子520myf.com 大便拉不干净是什么原因hcv9jop4ns8r.cn 湿疹可以吃什么hcv8jop2ns9r.cn
牡丹花代表什么生肖1949doufunao.com lee是什么牌子hcv8jop6ns4r.cn 阴道疼痛什么原因jingluanji.com 幽门螺杆菌是什么hcv8jop9ns1r.cn 吃什么皮肤会变白hcv8jop8ns4r.cn
山大王是什么意思zhiyanzhang.com 输卵管堵塞吃什么药可以疏通hcv9jop1ns2r.cn 3ph是什么意思hcv8jop9ns7r.cn 非农业户口是什么意思travellingsim.com 漉是什么意思hcv7jop6ns2r.cn
百度