红细胞阳性是什么意思| 两个土念什么| 苦瓜煮水喝有什么功效| 政府是干什么的| ct是什么意思| 什么的花瓣| 腰困是什么原因| 一节黑一节白是什么蛇| 活珠子是什么| 一马平川是什么意思| 肾阴虚吃什么药最好| 属兔生什么属相宝宝好| 卡路里什么意思| 吃驼奶粉有什么好处| 一什么桃子| 身上起小红点是什么原因| 螺蛳粉为什么那么臭| 梦见别人打我是什么意思| 血稠吃什么食物好得快| 124什么意思| 北豆腐是什么| 一只眼皮肿是什么原因| 清鱼是什么鱼| 玫瑰糠疹是什么原因引起的| 妇科活检是什么意思| 两拐是什么军衔| porsche是什么牌子的车| 梦到前女友征兆是什么| 低血压对身体有什么影响| 无国界医生是什么意思| 畏寒怕冷是什么原因| 什么的嫩芽| 肚子里的蛔虫是什么意思| 为什么你| 普外科是看什么病的| 低血压高是什么原因| 耳鸣耳聋吃什么药| 吃螃蟹不能吃什么| 红蜘蛛用什么药| 肚子胀气放屁吃什么药| 冻顶乌龙茶是什么茶| 荡漾是什么意思| 睡觉流口水吃什么药| 热得直什么| 节育环嵌顿是什么意思| 平起平坐代表什么生肖| 什么人不能喝大麦茶| 什么是排卵期怎么计算| 胸口疼挂什么科室| 2036年是什么年| 泳帽的作用是什么| 7月7号是什么节日| 心脏缺血吃什么补的快| 种草莓什么意思| 鼻子下面长痘痘是什么原因引起的| 梦见金项链是什么意思| 公鸡为什么打鸣| 为什么射精是流出来的| 诺如病毒通过什么传染| 北京是我国的什么中心| 脉细是什么意思| 变化无常的意思是什么| 心动过缓吃什么药| 母亲节送什么颜色的康乃馨| 肠癌是什么原因造成的| 为什么一睡觉就做梦| 小狗感冒了吃什么药| 做梦被打了是什么意思| 宫颈萎缩意味着什么| 眼睛有点黄是什么原因| 6.4是什么星座| 报销凭证是什么| feno是什么检查| 月经突然停止是什么原因| 兴旺的反义词是什么| 自慰是什么| ko是什么意思啊| 老人不睡觉是什么预兆| 烦恼千千是什么生肖| 江郎才尽是什么意思| 石灰的主要成分是什么| 为什么要打破伤风| 晕车喝什么| 骨质疏松有什么症状表现| 陶土色大便是什么颜色| 专升本要考什么| 尿蛋白十1是什么意思| 肠梗阻是因为什么原因引起的| 手指上的月牙代表什么| 痿是什么意思| 无什么| 衣服的英文是什么| 钥匙像什么| 炖羊骨头放什么调料| 胎儿头围偏大什么原因| 纹理是什么意思| 现象是什么意思| 王几是什么字| 嚭是什么意思| 鼻子两侧毛孔粗大是什么原因造成的| 墨菲定律讲的是什么| 手爱出汗是什么原因| 香港代表什么生肖| 阴囊长白毛是什么原因| 腊肉炒什么菜好吃| 起床口苦是什么原因| 7月30号什么星座| 小孩长得慢是什么原因| 磅礴是什么意思| 二型血糖高吃什么药好| 椴树是什么树| 笃笃是什么意思| 1938年属什么生肖| 牙痛用什么药止痛快| 狗喜欢吃什么| 眼角发黄是什么原因| 血滴子是什么| 梅干菜是什么菜做的| 叶赫那拉氏是什么旗| 看痘痘挂什么科| 175是什么码| 在编是什么意思| 什么背什么腰| 人为什么会做梦科学解释| 吃什么盐最好| 鼠目寸光是什么生肖| 做梦吃肉是什么征兆| 血液由什么组成| 本命年红内衣什么时候穿| 喉咙痛吃什么药效果最好| 吃什么伤口愈合的快| 外阴瘙痒涂什么药膏| 雨花茶是什么茶| 夹腿是什么意思| 坤沙酒是什么意思| 总是饿是什么原因| 脑管瘤的症状是什么| 艾灸是什么意思| 黄疸高是什么原因| 梦到屎是什么意思| 宝宝肠胃炎吃什么药| 5月份出生的是什么星座| 心电图逆钟向转位是什么意思| 木耳吃多了有什么坏处| 脚水肿是什么原因引起的| 二月初五是什么星座| 涤棉是什么面料| 肆意什么意思| 会厌炎吃什么药| 孩子鼻子出血什么原因造成的| 10月10是什么星座| 上钟什么意思| 阑尾炎属于什么科室| 氢化植物油是什么| 狗狗狂犬疫苗什么时候打| 6月15日是什么日子| 什么止疼药见效最快| 身份证借给别人有什么危害性| 初三什么时候毕业| DNA是什么意思啊| 合加羽念什么| 益生菌对人体有什么好处| 腺样体肥大吃什么药| 大肠在人体什么位置图| 冷暖自知是什么意思| 地球为什么自转| 得数是什么意思| 割包皮有什么影响| 什么是爱情| 眉心中间有痣代表什么| 失眠是什么症状| 孩子不说话挂什么科| 姓彭的女孩子取什么名字好| 十万个为什么儿童版| 口臭去医院挂什么科室看病| 什么食用油最好最健康| 萎了是什么意思| 为什么健身| 左小腹疼是什么原因| 前列腺钙化什么意思| 艾滋病有什么危害| 小孩发烧可以吃什么水果| eft是什么意思| 什么颜色加什么颜色等于绿色| 结核有什么症状| 什么水用不完| 鸡鸣寺求什么| 胸痛挂什么科| 什么的芦花| 肺肿了是什么病严重吗| 牙根吸收是什么意思| 世界八大奇迹是什么| 霉菌阳性是什么意思| 吃南瓜有什么好处和坏处| 牛肉不能跟什么一起吃| 免疫十一项都检查什么| 肉蒲团是什么| 检查胰腺挂什么科| 干性皮肤适合什么牌子的护肤品| 航五行属什么| 控线是什么意思| 牙龈肿痛吃什么药好| 脸浮肿是什么病的前兆| 握手言和是什么意思| 二氧化硅是什么晶体| 高处不胜寒什么意思| 婴儿游泳有什么好处和坏处| 血压低吃什么药好| lck是什么意思| 病毒性感冒发烧吃什么药| 吃什么长头发快| 破费是什么意思| 肠炎用什么药| 浙大校长什么级别| 金银花不能和什么一起吃| 干什么挣钱快| 一日之计在于晨是什么生肖| 性早熟有什么症状| 素鸡是用什么做的| 印堂发亮预兆着什么| t代表什么| 玖姿女装属于什么档次| 大小便失禁是什么意思| 囗腔溃疡吃什么维生素| 血小板偏低是什么意思| 柔式按摩是什么意思| 甘油三酯低是什么原因| huidr是什么品牌| o型血是什么血型| 姨妈是什么| 消防队属于什么编制| 北斗星代表什么生肖| 空调滴水什么原因| 排恶露吃什么药| 6像什么| 气血不足吃什么中成药| 退职是什么意思| 塔罗牌逆位是什么意思| 骨折不能吃什么| 棱是什么| 无极调光是什么意思| 小学什么时候期末考试| 产检建档需要什么资料| 猪沙肝是什么部位| 腹透是什么意思| 什么网名| 手上长小水泡是什么原因| 什么的挑选| 藏红花有什么作用和功效| 总胆固醇高有什么症状| 口巴念什么| goldlion是什么牌子| 酵母样真菌是什么意思| force是什么牌子| 肝右叶低密度灶是什么意思| 脚底有痣代表什么| 老子和孔子是什么关系| 和可以组什么词| 植物园有什么植物| 送命题是什么意思| prp治疗是什么意思| 肿气肿用什么药比较好| 甘油三酯高应该注意什么| 荷字五行属什么| 百度

美军再次空袭索马里“青年党”目标

百度   明星演绎外套+T恤搭配Look倪妮演绎T恤+外套搭配Look  一向会穿衣的倪妮必然是大家值得借鉴的例子,复古的格子长外套搭配黑色T恤,休闲复古不失Chic。

Optical computing or photonic computing uses light waves produced by lasers or incoherent sources for data processing, data storage or data communication for computing. For decades, photons have shown promise to enable a higher bandwidth than the electrons used in conventional computers (see optical fibers).

Most research projects focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. This approach appears to offer the best short-term prospects for commercial optical computing, since optical components could be integrated into traditional computers to produce an optical-electronic hybrid. However, optoelectronic devices consume 30% of their energy converting electronic energy into photons and back; this conversion also slows the transmission of messages. All-optical computers eliminate the need for optical-electrical-optical (OEO) conversions, thus reducing electrical power consumption.[1]

Application-specific devices, such as synthetic-aperture radar (SAR) and optical correlators, have been designed to use the principles of optical computing. Correlators can be used, for example, to detect and track objects,[2] and to classify serial time-domain optical data.[3]

Optical components for binary digital computer

edit

The fundamental building block of modern electronic computers is the transistor. To replace electronic components with optical ones, an equivalent optical transistor is required. This is achieved by crystal optics (using materials with a non-linear refractive index).[4] In particular, materials exist[5] where the intensity of incoming light affects the intensity of the light transmitted through the material in a similar manner to the current response of a bipolar transistor. Such an optical transistor[6][7] can be used to create optical logic gates,[7] which in turn are assembled into the higher level components of the computer's central processing unit (CPU). These will be nonlinear optical crystals used to manipulate light beams into controlling other light beams.

Like any computing system, an optical computing system needs four things to function well:

  1. optical processor
  2. optical data transfer, e.g. fiber-optic cable
  3. optical storage,[8]
  4. optical power source (light source)

Substituting electrical components will need data format conversion from photons to electrons, which will make the system slower.

Controversy

edit

There are some disagreements between researchers about the future capabilities of optical computers; whether or not they may be able to compete with semiconductor-based electronic computers in terms of speed, power consumption, cost, and size is an open question. Critics note that[9] real-world logic systems require "logic-level restoration, cascadability, fan-out and input–output isolation", all of which are currently provided by electronic transistors at low cost, low power, and high speed. For optical logic to be competitive beyond a few niche applications, major breakthroughs in non-linear optical device technology would be required, or perhaps a change in the nature of computing itself.[10]

Misconceptions, challenges, and prospects

edit

A significant challenge to optical computing is that computation is a nonlinear process in which multiple signals must interact. Light, which is an electromagnetic wave, can only interact with another electromagnetic wave in the presence of electrons in a material,[11] and the strength of this interaction is much weaker for electromagnetic waves, such as light, than for the electronic signals in a conventional computer. This may result in the processing elements for an optical computer requiring more power and larger dimensions than those for a conventional electronic computer using transistors.[citation needed]

A further misconception[by whom?] is that since light can travel much faster than the drift velocity of electrons, and at frequencies measured in THz, optical transistors should be capable of extremely high frequencies. However, any electromagnetic wave must obey the transform limit, and therefore the rate at which an optical transistor can respond to a signal is still limited by its spectral bandwidth. In fiber-optic communications, practical limits such as dispersion often constrain channels to bandwidths of tens of GHz, only slightly better than many silicon transistors. Obtaining dramatically faster operation than electronic transistors would therefore require practical methods of transmitting ultrashort pulses down highly dispersive waveguides.

Photonic logic

edit
 
Realization of a photonic controlled-NOT gate for use in quantum computing

Photonic logic is the use of photons (light) in logic gates (NOT, AND, OR, NAND, NOR, XOR, XNOR). Switching is obtained using nonlinear optical effects when two or more signals are combined.[7]

Resonators are especially useful in photonic logic, since they allow a build-up of energy from constructive interference, thus enhancing optical nonlinear effects.

Other approaches that have been investigated include photonic logic at a molecular level, using photoluminescent chemicals. In a demonstration, Witlicki et al. performed logical operations using molecules and SERS.[12]

Unconventional approaches

edit

Time delays optical computing

edit

The basic idea is to delay light (or any other signal) in order to perform useful computations.[13] Of interest would be to solve NP-complete problems as those are difficult problems for the conventional computers.

There are two basic properties of light that are actually used in this approach:

  • The light can be delayed by passing it through an optical fiber of a certain length.
  • The light can be split into multiple (sub)rays. This property is also essential because we can evaluate multiple solutions in the same time.

When solving a problem with time-delays the following steps must be followed:

  • The first step is to create a graph-like structure made from optical cables and splitters. Each graph has a start node and a destination node.
  • The light enters through the start node and traverses the graph until it reaches the destination. It is delayed when passing through arcs and divided inside nodes.
  • The light is marked when passing through an arc or through a node so that we can easily identify that fact at the destination node.
  • At the destination node we will wait for a signal (fluctuation in the intensity of the signal) which arrives at a particular moment(s) in time. If there is no signal arriving at that moment, it means that we have no solution for our problem. Otherwise the problem has a solution. Fluctuations can be read with a photodetector and an oscilloscope.

The first problem attacked in this way was the Hamiltonian path problem.[13]

The simplest one is the subset sum problem.[14] An optical device solving an instance with four numbers {a1, a2, a3, a4} is depicted below:

 

The light will enter in Start node. It will be divided into two (sub)rays of smaller intensity. These two rays will arrive into the second node at moments a1 and 0. Each of them will be divided into two subrays which will arrive in the third node at moments 0, a1, a2 and a1 + a2. These represents the all subsets of the set {a1, a2}. We expect fluctuations in the intensity of the signal at no more than four different moments. In the destination node we expect fluctuations at no more than 16 different moments (which are all the subsets of the given). If we have a fluctuation in the target moment B, it means that we have a solution of the problem, otherwise there is no subset whose sum of elements equals B. For the practical implementation we cannot have zero-length cables, thus all cables are increased with a small (fixed for all) value k'. In this case the solution is expected at moment B+n×k.

On-Chip Photonic Tensor Cores

edit

With increasing demands on graphical processing unit-based accelerator technologies, in the second decade of the 21st century, there has been a huge emphasis on the use of on-chip integrated optics to create photonics-based processors. The emergence of both deep learning neural networks based on phase modulation,[15] and more recently amplitude modulation using photonic memories [16] have created a new area of photonic technologies for neuromorphic computing,[17][18] leading to new photonic computing technologies, all on a chip such as the photonic tensor core.[19]

Wavelength-based computing

edit

Wavelength-based computing[20] can be used to solve the 3-SAT problem with n variables, m clauses and with no more than three variables per clause. Each wavelength, contained in a light ray, is considered as possible value-assignments to n variables. The optical device contains prisms and mirrors are used to discriminate proper wavelengths which satisfy the formula.[21]

Computing by xeroxing on transparencies

edit

This approach uses a photocopier and transparent sheets for performing computations.[22] k-SAT problem with n variables, m clauses and at most k variables per clause has been solved in three steps:[23]

  • Firstly all 2n possible assignments of n variables have been generated by performing n photocopies.
  • Using at most 2k copies of the truth table, each clause is evaluated at every row of the truth table simultaneously.
  • The solution is obtained by making a single copy operation of the overlapped transparencies of all m clauses.

Masking optical beams

edit

The travelling salesman problem has been solved by Shaked et al. (2007)[24] by using an optical approach. All possible TSP paths have been generated and stored in a binary matrix which was multiplied with another gray-scale vector containing the distances between cities. The multiplication is performed optically by using an optical correlator.

Optical Fourier co-processors

edit

Many computations, particularly in scientific applications, require frequent use of the 2D discrete Fourier transform (DFT) – for example in solving differential equations describing propagation of waves or transfer of heat. Though modern GPU technologies typically enable high-speed computation of large 2D DFTs, techniques have been developed that can perform continuous Fourier transform optically by utilising the natural Fourier transforming property of lenses. The input is encoded using a liquid crystal spatial light modulator and the result is measured using a conventional CMOS or CCD image sensor. Such optical architectures can offer superior scaling of computational complexity due to the inherently highly interconnected nature of optical propagation, and have been used to solve 2D heat equations.[25]

Ising machines

edit

Physical computers whose design was inspired by the theoretical Ising model are called Ising machines.[26][27][28]

Yoshihisa Yamamoto's lab at Stanford pioneered building Ising machines using photons. Initially Yamamoto and his colleagues built an Ising machine using lasers, mirrors, and other optical components commonly found on an optical table.[26][27]

Later a team at Hewlett Packard Labs developed photonic chip design tools and used them to build an Ising machine on a single chip, integrating 1,052 optical components on that single chip.[26]

Industry

edit

Some additional companies involved with optical computing development include IBM,[29] Microsoft,[30] Procyon Photonics,[31] Lightelligence,[32] Lightmatter,[33] Optalysys,[34] Xanadu Quantum Technologies, QuiX Quantum, ORCA Computing, PsiQuantum, Quandela [fr], and TundraSystems Global.[35]

See also

edit

References

edit
  1. ^ Nolte, D.D. (2001). Mind at Light Speed: A New Kind of Intelligence. Simon and Schuster. p. 34. ISBN 978-0-7432-0501-6.
  2. ^ Feitelson, Dror G. (1988). "Chapter 3: Optical Image and Signal Processing". Optical Computing: A Survey for Computer Scientists. Cambridge, Massachusetts: MIT Press. ISBN 978-0-262-06112-4.
  3. ^ Kim, S. K.; Goda, K.; Fard, A. M.; Jalali, B. (2011). "Optical time-domain analog pattern correlator for high-speed real-time image recognition". Optics Letters. 36 (2): 220–2. Bibcode:2011OptL...36..220K. doi:10.1364/ol.36.000220. PMID 21263506. S2CID 15492810.
  4. ^ "These Optical Gates Offer Electronic Access - IEEE Spectrum". IEEE. Retrieved 2025-08-05.
  5. ^ Paschotta, Dr Rüdiger (8 December 2006). "Encyclopedia of Laser Physics and Technology - nonlinear index, Kerr effect". RP Photonics Encyclopedia.
  6. ^ Jain, K.; Pratt, G. W. Jr. (1976). "Optical transistor". Appl. Phys. Lett. 28 (12): 719. Bibcode:1976ApPhL..28..719J. doi:10.1063/1.88627.
  7. ^ a b c US 4382660, K. Jain & G.W. Pratt, Jr., "Optical transistors and logic circuits embodying the same", published May 10, 1983 
  8. ^ "Project Silica". Microsoft Research. 4 November 2019. Retrieved 2025-08-05.
  9. ^ Tucker, R.S. (2010). "The role of optics in computing". Nature Photonics. 4 (7): 405. Bibcode:2010NaPho...4..405T. doi:10.1038/nphoton.2010.162.
  10. ^ Rajan, Renju; Babu, Padmanabhan Ramesh; Senthilnathan, Krishnamoorthy. "All-Optical Logic Gates Show Promise for Optical Computing". Photonics. Photonics Spectra. Retrieved 8 April 2018.
  11. ^ Philip R. Wallace (1996). Paradox Lost: Images of the Quantum. Springer. ISBN 978-0387946597.
  12. ^ Witlicki, Edward H.; Johnsen, Carsten; Hansen, Stinne W.; Silverstein, Daniel W.; Bottomley, Vincent J.; Jeppesen, Jan O.; Wong, Eric W.; Jensen, Lasse; Flood, Amar H. (2011). "Molecular Logic Gates Using Surface-Enhanced Raman-Scattered Light". J. Am. Chem. Soc. 133 (19): 7288–91. Bibcode:2011JAChS.133.7288W. doi:10.1021/ja200992x. PMID 21510609.
  13. ^ a b Oltean, Mihai (2006). A light-based device for solving the Hamiltonian path problem. Unconventional Computing. Springer LNCS 4135. pp. 217–227. arXiv:0708.1496. doi:10.1007/11839132_18.
  14. ^ Mihai Oltean, Oana Muntean (2009). "Solving the subset-sum problem with a light-based device". Natural Computing. 8 (2): 321–331. arXiv:0708.1964. doi:10.1007/s11047-007-9059-3. S2CID 869226.
  15. ^ Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Solja?i?, Marin (July 2017). "Deep learning with coherent nanophotonic circuits". Nature Photonics. 11 (7): 441–446. arXiv:1610.02365. Bibcode:2017NaPho..11..441S. doi:10.1038/nphoton.2017.93. ISSN 1749-4893. S2CID 13188174.
  16. ^ Ríos, Carlos; Youngblood, Nathan; Cheng, Zengguang; Le Gallo, Manuel; Pernice, Wolfram H. P.; Wright, C. David; Sebastian, Abu; Bhaskaran, Harish (February 2019). "In-memory computing on a photonic platform". Science Advances. 5 (2): eaau5759. arXiv:1801.06228. Bibcode:2019SciA....5.5759R. doi:10.1126/sciadv.aau5759. ISSN 2375-2548. PMC 6377270. PMID 30793028.
  17. ^ Prucnal, Paul R.; Shastri, Bhavin J. (2025-08-05). Neuromorphic Photonics. CRC Press. ISBN 978-1-4987-2524-8.
  18. ^ Shastri, Bhavin J.; Tait, Alexander N.; Ferreira de Lima, T.; Pernice, Wolfram H. P.; Bhaskaran, Harish; Wright, C. D.; Prucnal, Paul R. (February 2021). "Photonics for artificial intelligence and neuromorphic computing". Nature Photonics. 15 (2): 102–114. arXiv:2011.00111. Bibcode:2021NaPho..15..102S. doi:10.1038/s41566-020-00754-y. ISSN 1749-4893. S2CID 256703035.
  19. ^ Feldmann, J.; Youngblood, N.; Karpov, M.; Gehring, H.; Li, X.; Stappers, M.; Le Gallo, M.; Fu, X.; Lukashchuk, A.; Raja, A. S.; Liu, J.; Wright, C. D.; Sebastian, A.; Kippenberg, T. J.; Pernice, W. H. P. (January 2021). "Parallel convolutional processing using an integrated photonic tensor core". Nature. 589 (7840): 52–58. arXiv:2002.00281. Bibcode:2021Natur.589...52F. doi:10.1038/s41586-020-03070-1. hdl:10871/124352. ISSN 1476-4687. PMID 33408373. S2CID 256823189.
  20. ^ Sama Goliaei, Saeed Jalili (2009). An Optical Wavelength-Based Solution to the 3-SAT Problem. Optical SuperComputing Workshop. pp. 77–85. Bibcode:2009LNCS.5882...77G. doi:10.1007/978-3-642-10442-8_10.
  21. ^ Bartlett, Ben; Dutt, Avik; Fan, Shanhui (2025-08-05). "Deterministic photonic quantum computation in a synthetic time dimension". Optica. 8 (12): 1515–1523. arXiv:2101.07786. Bibcode:2021Optic...8.1515B. doi:10.1364/OPTICA.424258. ISSN 2334-2536. S2CID 231639424.
  22. ^ Head, Tom (2009). Parallel Computing by Xeroxing on Transparencies. Algorithmic Bioprocesses. Springer. pp. 631–637. doi:10.1007/978-3-540-88869-7_31.
  23. ^ Computing by xeroxing on transparencies, April 21, 2015, retrieved 2025-08-05
  24. ^ NT Shaked, S Messika, S Dolev, J Rosen (2007). "Optical solution for bounded NP-complete problems". Applied Optics. 46 (5): 711–724. Bibcode:2007ApOpt..46..711S. doi:10.1364/AO.46.000711. PMID 17279159. S2CID 17440025.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. ^ A. J. Macfaden, G. S. D. Gordon, T. D. Wilkinson (2017). "An optical Fourier transform coprocessor with direct phase determination". Scientific Reports. 7 (1): 13667. Bibcode:2017NatSR...713667M. doi:10.1038/s41598-017-13733-1. PMC 5651838. PMID 29057903.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ a b c Courtland, Rachel (2 January 2017). "HPE's New Chip Marks a Milestone in Optical Computing". IEEE Spectrum.
  27. ^ a b Cartlidge, Edwin (31 October 2016). "New Ising-machine computers are taken for a spin". Physics World.
  28. ^ Cho, Adrian (2025-08-05). "Odd computer zips through knotty tasks". Science.
  29. ^ Leprince-Ringuet, Daphne (2025-08-05). "IBM is using light, instead of electricity, to create ultra-fast computing". ZDNET. Retrieved 2025-08-05.
  30. ^ Wickens, Katie (2025-08-05). "Microsoft's light-based computer marks 'the unravelling of Moore's Law'". PC Gamer. Retrieved 2025-08-05.
  31. ^ Redrouthu, Sathvik (2025-08-05). "Tensor Algebra on an Optoelectronic Microchip". arXiv:2208.06749 [cs.PL].
  32. ^ de Wolff, Daniel (2025-08-05). "Accelerating AI at the speed of light". MIT News. Retrieved 2025-08-05.
  33. ^ Metz, Rachel (19 December 2023). "Photonic Computing Startup Lightmatter Hits $1.2 Billion Valuation". Bloomberg.com. Retrieved 19 December 2023.
  34. ^ "Optalysys launches FT:X 2000 - The world's first commercial optical processing system". insideHPC.com. 2025-08-05. Retrieved 2025-08-05.
  35. ^ Gülen, Kerem (2025-08-05). "What Is Optical Computing: How Does It Work, Companies And More". Dataconomy.com. Retrieved 2025-08-05.

Further reading

edit
edit

  Media related to Optical computing at Wikimedia Commons

左下腹疼挂什么科 糖化血红蛋白偏高是什么意思 耳仓为什么是臭的 下肢浮肿是什么原因引起的 颜艺是什么意思
食道肿瘤有什么症状 卖是什么意思 应激反应是什么意思 膀胱炎是什么症状 为什么一
包二奶是什么意思 胃胀胃酸是什么原因 甲状腺做什么检查最准确 专科有什么专业 无事不登三宝殿什么意思
美字五行属什么 过剩是什么意思 检测怀孕最准确的方法是什么 惊鸿一面是什么意思 节哀顺便是什么意思
三八妇女节是什么生肖hcv8jop8ns8r.cn 肾积水是什么原因造成的hcv9jop2ns9r.cn 胆结石是什么原因造成的hcv8jop9ns5r.cn 讲义气是什么意思hcv9jop6ns4r.cn 为非作歹是什么意思hcv8jop3ns6r.cn
心衰吃什么药kuyehao.com 怀孕为什么不能吃韭菜hcv8jop2ns8r.cn 版记是什么hcv8jop2ns1r.cn 日本艺伎是干什么的hcv8jop8ns8r.cn 鳑鲏吃什么hcv9jop4ns0r.cn
破军星是什么意思hcv8jop0ns0r.cn 五行海中金是什么意思hcv8jop5ns1r.cn 长沙有什么大学hcv8jop3ns0r.cn 央企与国企有什么区别hcv8jop6ns8r.cn 超现实主义是什么意思hcv9jop2ns3r.cn
泡打粉是什么hcv9jop5ns0r.cn 什么防晒霜效果最好hcv8jop9ns8r.cn 离婚需要什么资料hcv9jop4ns7r.cn 胃癌挂什么科hcv7jop9ns6r.cn 顶天立地是什么意思hcv7jop9ns1r.cn
百度 技术支持:克隆侠蜘蛛池 www.kelongchi.com