天秤座的幸运色是什么| 樱桃红是什么颜色| 唐卡是什么| 肺部条索影是什么意思| hpm是什么意思| 嗓子痒痒老想咳嗽是什么原因| 一什么杨桃| 蝶变是什么意思| 脚肿腿肿是什么原因引起的| 武则天是什么朝代| 今年男宝宝取什么名字好| 7月1日什么星座| 镇宅是什么意思| 什么是低筋面粉| 缓苗是什么意思| 水土不服吃什么药| 什么口什么心| 耳朵真菌感染用什么药| 璨字五行属什么| 眼睛老是肿着是什么原因造成的| 818是什么星座| 狐臭用什么药最好| 白头翁代表什么生肖| 明星每天都吃什么| 咽喉肿痛吃什么药| 楚乔传2什么时候上映| 肝掌是什么原因引起的| 皮皮虾吃什么| 9月3号是什么纪念日| 言过其实是什么意思| 肝主筋的筋是指什么| 脂肪肝吃什么中药| 宝宝上颚有白点是什么| 乳贴是什么| 厚黑学什么意思| 手掌心发红是什么原因| 奠什么意思| 热气是什么意思| pph是什么意思| 墨染是什么意思| 为什么总打喷嚏| 望梅止渴是什么故事| 玉势是什么| 高攀是什么意思| 小鹦鹉吃什么食物| 苯磺酸氨氯地平片什么时候吃| 甘草是什么| 子宫粘连是什么原因造成的| 去湿气吃什么食物好| 肠息肉是什么原因引起的| 胃阴虚有什么症状| 部署是什么意思| 什么时候测量血压最准确| 女性一般什么年龄绝经| 巩加虫念什么| 激素吃多了对身体有什么副作用| icd医学上是什么意思| 加字五行属什么| 等位基因是什么| 为什么会有生长纹| 海马用什么呼吸| 喝什么解酒快| 霉菌感染什么症状| 一什么一什么词语| 逃之夭夭是什么意思| 嘴唇干裂脱皮是什么原因| 红豆大红豆芋头是什么歌| 煲什么汤去湿气最好| 花生不能和什么食物一起吃| 有什么烟| 什么狗不咬人| 高血压适合吃什么食物| 鹅喜欢吃什么食物| 白食是什么意思| 口腔溃疡吃什么药| gamma什么意思| 胖大海和什么搭配最好| 总是低烧是什么原因造成的| 铃字五行属什么| 21年是什么生肖年| 水土不服是什么意思| 才字五行属什么| 氨糖有什么功效| 一月8日是什么星座| brunch是什么意思| 羊肠小道什么意思| 阿西是什么意思| 喝蛋白粉有什么副作用| 降甘油三酯吃什么食物最好| 什么减肥药最安全| 女人腰疼是什么妇科病| 手足口病忌口什么食物| 低烧什么症状| 什么是指| ih医学上是什么意思| 女生的胸长什么样子| 今天出生的男宝宝取什么名字好| 病毒疣是什么| 宫殿是什么意思| 白色裤子配什么上衣好看| 张飞的武器叫什么| 头经常晕是什么原因| 什么神什么注| boss是什么意思| 白血球低吃什么补得快| 低密度脂蛋白偏高吃什么药| 人民币用什么材料做的| 甲亢可以吃什么水果| bpd是什么意思| 黄片是什么| ca199检查是什么意思| 张艺兴为什么不退出exo| 扭转乾坤是什么意思| 冰心原名叫什么名字| 三个鱼读什么| 鹦鹉可以吃什么| 诸葛亮老婆叫什么名字| 岳飞是什么生肖| ppa是什么药| 日斤读什么字| 扁桃体发炎发烧吃什么药| 二月底是什么星座| 第二视角是什么意思| 前列腺钙化是什么意思| 双肺纹理增强是什么意思| 孩提是什么意思| 甲硝唑有什么副作用| 芒果鱼是什么鱼| 什么是体液| 鸡胗是鸡的什么部位| 死党什么意思| 五心烦热吃什么药最快| 什么工作好| 颈椎痛吃什么药最好| 蒸馏水是什么水| 明鉴是什么意思| 突然腰疼是什么原因| 湿气重去医院挂什么科| 怀孕前三个月不能吃什么| 后背酸痛是什么原因| 万能血型是什么血型| 月经提前量少是什么原因| 胳膊上的肌肉叫什么| 二战时期是什么时候| 观音菩萨属什么生肖| 一 什么云| 土猪肉和普通猪肉有什么分别| 川贝是什么| 什么是阻生牙| 吃什么补雌激素最快| 冬瓜不能和什么一起吃| 乘风破浪是什么生肖| 少年郎是什么意思| 贵阳有什么特产| 松针是什么| 阿修罗道是什么意思| 胸腔里面像岔气了的疼是什么原因| 石榴石一般什么价位| 桂林山水甲天下是什么意思| 早上起床吐痰带血是什么原因| 男人喜欢什么样的女人做老婆| 爱出汗吃什么药好| 金银花有什么功效| 卡地亚手表什么档次| 天热出汗多是什么原因| 方方土是什么字| 忤逆是什么意思| 九个口是什么字| 颈椎病挂号挂什么科| 胰岛素的作用是什么| 什么是拿铁| 眼睛胀痛什么原因| 宫颈癌做什么检查| 五月初五是什么星座| 春雨绵绵是什么生肖| 右眼上眼皮跳是什么预兆| 侄子是什么关系| 吊瓜是什么瓜| 白猫来家里有什么预兆| 过敏性鼻炎吃什么水果好| 周杰伦是什么星座| 什么话| 红细胞数目偏高是什么意思| 汗毛旺盛是什么原因| 6月18日是什么节| 智商135是什么水平| 1963年的兔是什么命| 龙和什么生肖最配| earth是什么意思| 经常打嗝是什么原因引起的| 近亲结婚生的孩子会得什么病| 威化是什么意思| 桑叶泡水喝有什么功效| 米线是什么材料做的| 6月23号是什么日子| 吃什么东西对肝脏好| 02年属马的是什么命| 现在钱为什么这么难挣| hbsag阴性是什么意思| jet是什么意思| 131是什么意思| 梦见相亲是什么征兆| 性激素是什么意思| 倾字五行属什么| 代沟是什么| 晕车的人是什么体质| 痤疮长什么样| 0x00000024蓝屏代码是什么意思| 自缚是什么意思| 画画用什么铅笔| 2001年是什么年| 刺史是什么官职| 大腿粗是什么原因导致的| 早泄阳痿吃什么药| 人生百味下一句是什么| 败血症是什么病| 小腹胀是什么原因女性| 肝介入治疗是什么意思| 葡萄糖阴性什么意思| 拉肚子可以喝什么饮料| 天庭的动物是什么生肖| 原研药是什么意思| 西字里面加一横是什么字| 嘴碎什么意思| 邮箱地址填什么| 小孩子上户口需要什么证件| 远山含黛是什么意思| 硬膜囊受压是什么意思| 体恤是什么意思| 少将相当于地方什么级别| 尿带血是什么原因| 什么炒肉好吃| 扁桃和芒果有什么区别| elf是什么意思| 为什么趴着睡觉会胀气然后打嗝| 累得什么| 什么的青草| 龟粮什么牌子的好| 十月30号是什么星座| 短pr间期是什么意思| 胸闷气短是什么原因造成的| 地藏菩萨求什么最灵| 反流性胃炎吃什么药| 什么症状| 乳腺结节和乳腺增生有什么区别| 受益匪浅是什么意思| 什么病不能吃牛肉| 胃酸有什么办法缓解| 品质是什么| 什么容易误诊为水痘| 北京大学什么专业最好| 什么是脑卒中| 下巴长痘痘是什么原因引起的| 缺铁吃什么药| 婴儿补铁吃什么铁剂| 瑗字五行属什么| 萎谢是什么意思| 10月30日是什么星座| pca是什么意思| 什么网站可以看黄色视频| 向日葵代表什么| 什么油锯好| 天麻什么时候种植| 发粉是什么| 百度

厚植中非友谊 续写合作新篇——写在习近平主席提出对非真实亲诚理念五周年之际

百度 ”劳伦说:“我正在游行,因为我的朋友曾经坐在教室里的那张空桌子边,我们分享的关于未来的谈话还未完成,我正在为我未说的再见而游行,也为美国的未来而游行,我希望事情会得到改变,有一天我们可以在应该感到安全的地方,例如学校,再次感到安全。

Robust optimization is a field of mathematical optimization theory that deals with optimization problems in which a certain measure of robustness is sought against uncertainty that can be represented as deterministic variability in the value of the parameters of the problem itself and/or its solution. It is related to, but often distinguished from, probabilistic optimization methods such as chance-constrained optimization.[1][2]

History

edit

The origins of robust optimization date back to the establishment of modern decision theory in the 1950s and the use of worst case analysis and Wald's maximin model as a tool for the treatment of severe uncertainty. It became a discipline of its own in the 1970s with parallel developments in several scientific and technological fields. Over the years, it has been applied in statistics, but also in operations research,[3] electrical engineering,[4][5][6] control theory,[7] finance,[8] portfolio management[9] logistics,[10] manufacturing engineering,[11] chemical engineering,[12] medicine,[13] and computer science. In engineering problems, these formulations often take the name of "Robust Design Optimization", RDO or "Reliability Based Design Optimization", RBDO.

Example 1

edit

Consider the following linear programming problem

 

where   is a given subset of  .

What makes this a 'robust optimization' problem is the   clause in the constraints. Its implication is that for a pair   to be admissible, the constraint   must be satisfied by the worst   pertaining to  , namely the pair   that maximizes the value of   for the given value of  .

If the parameter space   is finite (consisting of finitely many elements), then this robust optimization problem itself is a linear programming problem: for each   there is a linear constraint  .

If   is not a finite set, then this problem is a linear semi-infinite programming problem, namely a linear programming problem with finitely many (2) decision variables and infinitely many constraints.

Classification

edit

There are a number of classification criteria for robust optimization problems/models. In particular, one can distinguish between problems dealing with local and global models of robustness; and between probabilistic and non-probabilistic models of robustness. Modern robust optimization deals primarily with non-probabilistic models of robustness that are worst case oriented and as such usually deploy Wald's maximin models.

Local robustness

edit

There are cases where robustness is sought against small perturbations in a nominal value of a parameter. A very popular model of local robustness is the radius of stability model:

 

where   denotes the nominal value of the parameter,   denotes a ball of radius   centered at   and   denotes the set of values of   that satisfy given stability/performance conditions associated with decision  .

In words, the robustness (radius of stability) of decision   is the radius of the largest ball centered at   all of whose elements satisfy the stability requirements imposed on  . The picture is this:

 

where the rectangle   represents the set of all the values   associated with decision  .

Global robustness

edit

Consider the simple abstract robust optimization problem

 

where   denotes the set of all possible values of   under consideration.

This is a global robust optimization problem in the sense that the robustness constraint   represents all the possible values of  .

The difficulty is that such a "global" constraint can be too demanding in that there is no   that satisfies this constraint. But even if such an   exists, the constraint can be too "conservative" in that it yields a solution   that generates a very small payoff   that is not representative of the performance of other decisions in  . For instance, there could be an   that only slightly violates the robustness constraint but yields a very large payoff  . In such cases it might be necessary to relax a bit the robustness constraint and/or modify the statement of the problem.

Example 2

edit

Consider the case where the objective is to satisfy a constraint  . where   denotes the decision variable and   is a parameter whose set of possible values in  . If there is no   such that  , then the following intuitive measure of robustness suggests itself:

 

where   denotes an appropriate measure of the "size" of set  . For example, if   is a finite set, then   could be defined as the cardinality of set  .

In words, the robustness of decision is the size of the largest subset of   for which the constraint   is satisfied for each   in this set. An optimal decision is then a decision whose robustness is the largest.

This yields the following robust optimization problem:

 

This intuitive notion of global robustness is not used often in practice because the robust optimization problems that it induces are usually (not always) very difficult to solve.

Example 3

edit

Consider the robust optimization problem

 

where   is a real-valued function on  , and assume that there is no feasible solution to this problem because the robustness constraint   is too demanding.

To overcome this difficulty, let   be a relatively small subset of   representing "normal" values of   and consider the following robust optimization problem:

 

Since   is much smaller than  , its optimal solution may not perform well on a large portion of   and therefore may not be robust against the variability of   over  .

One way to fix this difficulty is to relax the constraint   for values of   outside the set   in a controlled manner so that larger violations are allowed as the distance of   from   increases. For instance, consider the relaxed robustness constraint

 

where   is a control parameter and   denotes the distance of   from  . Thus, for   the relaxed robustness constraint reduces back to the original robustness constraint. This yields the following (relaxed) robust optimization problem:

 

The function   is defined in such a manner that

 

and

 

and therefore the optimal solution to the relaxed problem satisfies the original constraint   for all values of   in  . It also satisfies the relaxed constraint

 

outside  .

Non-probabilistic robust optimization models

edit

The dominating paradigm in this area of robust optimization is Wald's maximin model, namely

 

where the   represents the decision maker, the   represents Nature, namely uncertainty,   represents the decision space and   denotes the set of possible values of   associated with decision  . This is the classic format of the generic model, and is often referred to as minimax or maximin optimization problem. The non-probabilistic (deterministic) model has been and is being extensively used for robust optimization especially in the field of signal processing.[14][15][16]

The equivalent mathematical programming (MP) of the classic format above is

 

Constraints can be incorporated explicitly in these models. The generic constrained classic format is

 

The equivalent constrained MP format is defined as:

 

Probabilistically robust optimization models

edit

These models quantify the uncertainty in the "true" value of the parameter of interest by probability distribution functions. They have been traditionally classified as stochastic programming and stochastic optimization models. Recently, probabilistically robust optimization has gained popularity by the introduction of rigorous theories such as scenario optimization able to quantify the robustness level of solutions obtained by randomization. These methods are also relevant to data-driven optimization methods.

Robust counterpart

edit

The solution method to many robust program involves creating a deterministic equivalent, called the robust counterpart. The practical difficulty of a robust program depends on if its robust counterpart is computationally tractable.[17][18]

See also

edit

References

edit
  1. ^ Riaz, Muhammad; Ahmad, Sadiq; Hussain, Irshad; Naeem, Muhammad; Mihet-Popa, Lucian (2022). "Probabilistic Optimization Techniques in Smart Power System". Energies. 15 (3): 825. doi:10.3390/en15030825. hdl:11250/2988376.
  2. ^ "Robust Optimization: Chance Constraints" (PDF). 2025-08-07. Archived from the original (PDF) on 2025-08-07.
  3. ^ Bertsimas, Dimitris; Sim, Melvyn (2004). "The Price of Robustness". Operations Research. 52 (1): 35–53. doi:10.1287/opre.1030.0065. hdl:2268/253225. S2CID 8946639.
  4. ^ Giraldo, Juan S.; Castrillon, Jhon A.; Lopez, Juan Camilo; Rider, Marcos J.; Castro, Carlos A. (July 2019). "Microgrids Energy Management Using Robust Convex Programming". IEEE Transactions on Smart Grid. 10 (4): 4520–4530. doi:10.1109/TSG.2018.2863049. ISSN 1949-3053. S2CID 115674048.
  5. ^ Shabanzadeh M; Sheikh-El-Eslami, M-K; Haghifam, P; M-R (October 2015). "The design of a risk-hedging tool for virtual power plants via robust optimization approach". Applied Energy. 155: 766–777. Bibcode:2015ApEn..155..766S. doi:10.1016/j.apenergy.2015.06.059.
  6. ^ Shabanzadeh M; Fattahi, M (July 2015). "Generation Maintenance Scheduling via robust optimization". 2015 23rd Iranian Conference on Electrical Engineering. pp. 1504–1509. doi:10.1109/IranianCEE.2015.7146458. ISBN 978-1-4799-1972-7. S2CID 8774918.
  7. ^ Khargonekar, P.P.; Petersen, I.R.; Zhou, K. (1990). "Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory". IEEE Transactions on Automatic Control. 35 (3): 356–361. doi:10.1109/9.50357.
  8. ^ Robust portfolio optimization
  9. ^ Md. Asadujjaman and Kais Zaman, "Robust Portfolio Optimization under Data Uncertainty" 15th National Statistical Conference, December 2014, Dhaka, Bangladesh.
  10. ^ Yu, Chian-Son; Li, Han-Lin (2000). "A robust optimization model for stochastic logistic problems". International Journal of Production Economics. 64 (1–3): 385–397. doi:10.1016/S0925-5273(99)00074-2.
  11. ^ Strano, M (2006). "Optimization under uncertainty of sheet-metal-forming processes by the finite element method". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 220 (8): 1305–1315. doi:10.1243/09544054JEM480. S2CID 108843522.
  12. ^ Bernardo, Fernando P.; Saraiva, Pedro M. (1998). "Robust optimization framework for process parameter and tolerance design". AIChE Journal. 44 (9): 2007–2017. Bibcode:1998AIChE..44.2007B. doi:10.1002/aic.690440908. hdl:10316/8195.
  13. ^ Chu, Millie; Zinchenko, Yuriy; Henderson, Shane G; Sharpe, Michael B (2005). "Robust optimization for intensity modulated radiation therapy treatment planning under uncertainty". Physics in Medicine and Biology. 50 (23): 5463–5477. Bibcode:2005PMB....50.5463C. doi:10.1088/0031-9155/50/23/003. PMID 16306645. S2CID 15713904.
  14. ^ Verdu, S.; Poor, H. V. (1984). "On Minimax Robustness: A general approach and applications". IEEE Transactions on Information Theory. 30 (2): 328–340. CiteSeerX 10.1.1.132.837. doi:10.1109/tit.1984.1056876.
  15. ^ Kassam, S. A.; Poor, H. V. (1985). "Robust Techniques for Signal Processing: A Survey". Proceedings of the IEEE. 73 (3): 433–481. doi:10.1109/proc.1985.13167. hdl:2142/74118. S2CID 30443041.
  16. ^ M. Danish Nisar. "Minimax Robustness in Signal Processing for Communications", Shaker Verlag, ISBN 978-3-8440-0332-1, August 2011.
  17. ^ Ben-Tal A., El Ghaoui, L. and Nemirovski, A. (2009). Robust Optimization. Princeton Series in Applied Mathematics, Princeton University Press, 9-16.
  18. ^ Leyffer S., Menickelly M., Munson T., Vanaret C. and Wild S. M (2020). A survey of nonlinear robust optimization. INFOR: Information Systems and Operational Research, Taylor \& Francis.

Further reading

edit
edit
经常长溃疡是什么原因引起的 鼻炎吃什么药好 煞南是什么意思 长江后浪推前浪是什么生肖 肿瘤患者不能吃什么
支付宝余额和余额宝有什么区别 复视是什么意思 牙痛挂什么科 左肾肾盂分离什么意思 黄豆什么时候播种
毛泽东什么时候死的 淑字五行属什么 吃什么药能让月经马上来 什么地游戏 激素6项什么时候查
蒋介石为什么不杀张学良 为什么要做肠镜检查 手上有红点是什么原因 什么病不能吃松花粉 水险痣什么意思
骨质疏松症有什么症状hcv9jop6ns4r.cn 脸部麻木是什么原因引起的hcv9jop1ns3r.cn 大校军衔相当于什么官hcv7jop6ns8r.cn 气短吃什么药立马见效hcv8jop6ns8r.cn 颈椎反曲是什么意思hcv7jop5ns5r.cn
口腔医学和口腔医学技术有什么区别hcv8jop0ns5r.cn 荷花又什么又什么kuyehao.com 老人吃什么水果对身体好hcv9jop3ns7r.cn 什么是红曲米bysq.com 盗窃是什么意思hcv7jop5ns1r.cn
鱼字五行属什么hcv7jop6ns3r.cn 意蕴什么意思hcv8jop9ns6r.cn 直肠下垂有什么症状hcv8jop3ns8r.cn 疏离感是什么意思hcv8jop2ns0r.cn 尿隐血弱阳性是什么意思naasee.com
汗毛旺盛是什么原因zsyouku.com 钛对人体有什么好处jasonfriends.com 男性hpv挂什么科bjcbxg.com 牙髓炎吃什么药最有效hcv8jop3ns2r.cn 什么车性价比最高hcv8jop2ns9r.cn
百度