实体店是什么意思| 国家副主席是什么级别| 威海有什么特产| 价值是什么| 小儿风寒感冒吃什么药最好| 为什么正骨后几天越来越疼| 肺部玻璃结节是什么病| 撕脱性骨折是什么意思| 血糖偏低是什么原因引起的| 喉咙有痰吐出来有血是什么原因| 什么是g点| 桃花眼是什么意思| 健康证需要检查什么项目| 浑身疼是什么原因| 自讨没趣什么意思| 余光是什么意思| 4月20是什么星座| 虾米是什么意思| 秋葵与什么食物相克| 为什么会得胆结石| 玫瑰花可以和什么一起泡水喝| 陶土色大便是什么颜色| 多吃山竹有什么好处| 小意思是什么意思| e m s是什么快递| 点痣不能吃什么东西| 凿壁偷光形容什么| 拼图用什么软件| 朱字五行属什么| 圣女果是什么水果| golden是什么牌子| 三头六臂指什么生肖| 头皮痛什么原因引起的| 充电头什么牌子好| 李姓男孩起什么名字好| 鞘膜积液是什么病| 5月12是什么星座| 病人出院送什么花| 肾虚吃什么补| 爱无能是什么意思| 肾结石吃什么药能化石| 什么芦荟可以直接擦脸| 水钠潴留什么意思| 菊花什么时候开花| 六五年属什么| 多囊卵巢综合症是什么原因造成的| 肉馅可以做什么美食| 消化道出血吃什么药| AFP医学上是什么意思| 护理是干什么的| visa卡是什么| 梦见带小孩是什么意思| 姨妈痛吃什么药| 丹字五行属什么| 喉咙痛流鼻涕吃什么药| b驾照能开什么车| 种草莓是什么意思| 脑血管堵塞吃什么药最好| 脾胃不好吃什么水果好| 月经总推迟是什么原因| 胸闷气短是什么原因引起的| 上面一个日下面一个立是什么字| 什么样的雪莲| fila是什么牌子| 固液法白酒是什么意思| 吃生红枣有什么好处| 血糖高能吃什么食物| 汉高祖叫什么名字| 猕猴桃树长什么样| hpv去医院挂什么科| 多吃核桃有什么好处和坏处| 低血糖吃什么药| 激素六项挂什么科| 早上起床牙龈出血是什么原因| 8月8日是什么星座| 莲子心有什么功效| 究竟涅盘是什么意思| 土化是什么字| 松树的叶子像什么| 弱智是什么意思| 燕窝什么季节吃最好| 杺字五行属什么| 硕字五行属什么| 两颗星是什么军衔| 什么寒什么冻| 叶公好龙的好是什么意思| 黄色配什么颜色最搭| 全血细胞减少是什么意思| 齁不住是什么意思| 作曲是什么意思| 人为什么会得抑郁症| 肾上腺是什么意思| 精油有什么功效| 羊肉不能和什么一起吃| 心境情感障碍是什么病| 栀子花叶子发黄是什么原因| 荔枝可以做什么菜| 黑枸杞有什么功效| 种牙和假牙有什么区别| 头晕想睡觉是什么原因| 海鸥手表是什么档次| 经期吃什么排污血最强| 保拉纳啤酒什么档次| 右肋骨下方隐隐疼痛是什么原因| 晚上睡觉脚底发热是什么原因| 心动过速吃什么药最好| 拮抗药物是什么药| 莎字五行属什么| 半干型黄酒是什么意思| 晚上吃什么有助于减肥| 110斤穿什么码衣服| 生姜和红枣煮水喝有什么作用| 应该说什么| whoo是什么牌子| 异常白细胞形态检查是查什么病| 什么茶解酒| 房颤是什么症状| 猫喜欢吃什么| 束带是什么| 多发性脂肪瘤是什么原因造成的| 吃什么补充维生素b6| 历年是什么意思| 病机是什么意思| 万年历是什么| 吝啬什么意思| 13岁属什么生肖| 嘴唇一圈发黑是什么原因造成的| cu什么意思| 脚气用什么药好| 疱疹不能吃什么食物| 做梦梦到钱是什么预兆| 二氧化碳是什么东西| 睡觉流口水是什么原因| 锹形虫吃什么| 久负盛名的负是什么意思| 喝什么茶能降低血糖| 晕倒挂什么科| 溃疡性结肠炎吃什么药| 送葬后回家注意什么| 星期一右眼皮跳是什么预兆| 条件反射是什么| 蛇标志的车是什么牌子| 什么是三有保护动物| 冷冻跟冷藏有什么区别| 肠息肉是什么| lcp是什么意思| 胃溃疡十二指肠溃疡吃什么药| 眼角长痘痘是什么原因| 肺部微结节是什么意思| 眼屎多吃什么药效果好| 1980年五行属什么| 尿酸高要吃什么药| 朕是什么时候开始用的| 老出汗是什么原因| 人为什么会梦游| 早晨起床口干口苦是什么原因| 一个家庭最重要的是什么| 米非司酮片是什么药| 魔芋丝是什么做的| 垣字五行属什么| 做完手术吃什么水果好| 九出十三归是什么意思| 腿脚发麻是什么原因| 小舌头学名叫什么| 人类什么时候灭绝| 粘米粉是什么粉| 什么头什么面| 长期失眠看什么科最好| 心电轴重度左偏是什么意思| 炭疽是什么病| 翌字五行属什么| 长发公主叫什么名字| 头发五行属什么| 恩替卡韦片是什么药| 四查十对的内容是什么| 十周年是什么婚| 京酱肉丝用什么肉| 骨质硬化是什么意思| 脑梗是什么引起的| 球镜是什么意思| 任意门是什么意思| 中性粒细胞百分比偏低什么意思| 精气是什么意思| 报应是什么意思| 属蛇的贵人是什么属相| 晚上胃疼是什么原因| 大学记过处分有什么影响| 巴洛特利为什么叫巴神| 副校长是什么级别| 亩产是什么意思| 鱼露是什么味道| 下海什么意思| 什么的照射| 家蛇出现寓意什么| 为什么屁股上会长痘| 什么的杨桃| 做小月子要注意什么| 心脏不好挂什么科室| 小孩积食发烧吃什么药| 吃亚麻籽有什么好处| samsung是什么牌子| 缺铁性贫血吃什么食物| 右胳膊发麻是什么原因| 基因突变发生在什么时期| 野蒜有什么功效和作用| dt是什么意思| 什么什么一惊| 什么人不能吃火龙果| 久卧伤什么| 水乳是什么| 线人是什么意思| ppl是什么药| 盆腔炎要做什么检查| 大水冲了龙王庙什么意思| 什么人容易得脑溢血| 尿里有红细胞是什么原因| 继发性是什么意思| 柠檬泡水有什么好处| 海参不适合什么人吃| 叶公好龙讽刺了什么| 舌头黄是什么原因| 天德合是什么意思| 辟邪剑法为什么要自宫| 周知是什么意思| 青龙男是什么意思| 烂嘴角是缺什么维生素| 97年什么命| 放臭屁吃什么药| 48年属什么生肖| 病字是什么结构| 总胆红素高是什么意思| plv是什么意思| 应无所住而生其心什么意思| 茶叶蛋用什么茶叶最好| 梦见摘辣椒是什么意思| 随餐服用是什么意思| 11月份生日是什么星座| 绿矾是什么| 拉痢疾是什么症状| dha中文叫什么| 什么像什么什么| 吃什么排便| 胃潴留是什么病| 细佬是什么意思| 蜂王浆是什么| 为什么会牙龈出血| 这是什么猫| 癌胚抗原高是什么意思| 人为什么会觉得累| 宝宝囟门什么时候闭合| 悲戚是什么意思| 无语是什么意思| 吃什么润肺养肺最快| 吃百家饭是什么意思| 2017年属鸡火命缺什么| 首战告捷什么意思| 高原反应有什么症状| 口臭看什么科室| 什么是正装| 河北有什么市| 泡热水脚有什么好处| 卡拉胶是什么| 痴女是什么意思| 手指甲上的月牙代表什么| 百度

为解决库存贬值压力 油服企业在尴尬中求破局

百度 1.运动鞋+短裙迷你裙的芳华感调配动感的运动鞋,让十七岁的芳华气味在你身上泛动,好版型的运动鞋更能够让你的腿型不输高跟鞋哦!2.运动鞋+中长裙天然生成高雅的中长裙也很合适运动鞋哦!只需别穿到高端酒会上,一双小白鞋或许小黑鞋舒适又美观。

When classification is performed by a computer, statistical methods are normally used to develop the algorithm.

Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or features. These properties may variously be categorical (e.g. "A", "B", "AB" or "O", for blood type), ordinal (e.g. "large", "medium" or "small"), integer-valued (e.g. the number of occurrences of a particular word in an email) or real-valued (e.g. a measurement of blood pressure). Other classifiers work by comparing observations to previous observations by means of a similarity or distance function.

An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category.

Terminology across fields is quite varied. In statistics, where classification is often done with logistic regression or a similar procedure, the properties of observations are termed explanatory variables (or independent variables, regressors, etc.), and the categories to be predicted are known as outcomes, which are considered to be possible values of the dependent variable. In machine learning, the observations are often known as instances, the explanatory variables are termed features (grouped into a feature vector), and the possible categories to be predicted are classes. Other fields may use different terminology: e.g. in community ecology, the term "classification" normally refers to cluster analysis.

Relation to other problems

edit

Classification and clustering are examples of the more general problem of pattern recognition, which is the assignment of some sort of output value to a given input value. Other examples are regression, which assigns a real-valued output to each input; sequence labeling, which assigns a class to each member of a sequence of values (for example, part of speech tagging, which assigns a part of speech to each word in an input sentence); parsing, which assigns a parse tree to an input sentence, describing the syntactic structure of the sentence; etc.

A common subclass of classification is probabilistic classification. Algorithms of this nature use statistical inference to find the best class for a given instance. Unlike other algorithms, which simply output a "best" class, probabilistic algorithms output a probability of the instance being a member of each of the possible classes. The best class is normally then selected as the one with the highest probability. However, such an algorithm has numerous advantages over non-probabilistic classifiers:

  • It can output a confidence value associated with its choice (in general, a classifier that can do this is known as a confidence-weighted classifier).
  • Correspondingly, it can abstain when its confidence of choosing any particular output is too low.
  • Because of the probabilities which are generated, probabilistic classifiers can be more effectively incorporated into larger machine-learning tasks, in a way that partially or completely avoids the problem of error propagation.

Frequentist procedures

edit

Early work on statistical classification was undertaken by Fisher,[1][2] in the context of two-group problems, leading to Fisher's linear discriminant function as the rule for assigning a group to a new observation.[3] This early work assumed that data-values within each of the two groups had a multivariate normal distribution. The extension of this same context to more than two groups has also been considered with a restriction imposed that the classification rule should be linear.[3][4] Later work for the multivariate normal distribution allowed the classifier to be nonlinear:[5] several classification rules can be derived based on different adjustments of the Mahalanobis distance, with a new observation being assigned to the group whose centre has the lowest adjusted distance from the observation.

Bayesian procedures

edit

Unlike frequentist procedures, Bayesian classification procedures provide a natural way of taking into account any available information about the relative sizes of the different groups within the overall population.[6] Bayesian procedures tend to be computationally expensive and, in the days before Markov chain Monte Carlo computations were developed, approximations for Bayesian clustering rules were devised.[7]

Some Bayesian procedures involve the calculation of group-membership probabilities: these provide a more informative outcome than a simple attribution of a single group-label to each new observation.

Binary and multiclass classification

edit

Classification can be thought of as two separate problems – binary classification and multiclass classification. In binary classification, a better understood task, only two classes are involved, whereas multiclass classification involves assigning an object to one of several classes.[8] Since many classification methods have been developed specifically for binary classification, multiclass classification often requires the combined use of multiple binary classifiers.

Feature vectors

edit

Most algorithms describe an individual instance whose category is to be predicted using a feature vector of individual, measurable properties of the instance. Each property is termed a feature, also known in statistics as an explanatory variable (or independent variable, although features may or may not be statistically independent). Features may variously be binary (e.g. "on" or "off"); categorical (e.g. "A", "B", "AB" or "O", for blood type); ordinal (e.g. "large", "medium" or "small"); integer-valued (e.g. the number of occurrences of a particular word in an email); or real-valued (e.g. a measurement of blood pressure). If the instance is an image, the feature values might correspond to the pixels of an image; if the instance is a piece of text, the feature values might be occurrence frequencies of different words. Some algorithms work only in terms of discrete data and require that real-valued or integer-valued data be discretized into groups (e.g. less than 5, between 5 and 10, or greater than 10).

Linear classifiers

edit

A large number of algorithms for classification can be phrased in terms of a linear function that assigns a score to each possible category k by combining the feature vector of an instance with a vector of weights, using a dot product. The predicted category is the one with the highest score. This type of score function is known as a linear predictor function and has the following general form:   where Xi is the feature vector for instance i, βk is the vector of weights corresponding to category k, and score(Xi, k) is the score associated with assigning instance i to category k. In discrete choice theory, where instances represent people and categories represent choices, the score is considered the utility associated with person i choosing category k.

Algorithms with this basic setup are known as linear classifiers. What distinguishes them is the procedure for determining (training) the optimal weights/coefficients and the way that the score is interpreted.

Examples of such algorithms include

Algorithms

edit

Since no single form of classification is appropriate for all data sets, a large toolkit of classification algorithms has been developed. The most commonly used include:[9]

Choices between different possible algorithms are frequently made on the basis of quantitative evaluation of accuracy.

Application domains

edit

Classification has many applications. In some of these, it is employed as a data mining procedure, while in others more detailed statistical modeling is undertaken.

See also

edit

References

edit
  1. ^ Fisher, R. A. (1936). "The Use of Multiple Measurements in Taxonomic Problems". Annals of Eugenics. 7 (2): 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x. hdl:2440/15227.
  2. ^ Fisher, R. A. (1938). "The Statistical Utilization of Multiple Measurements". Annals of Eugenics. 8 (4): 376–386. doi:10.1111/j.1469-1809.1938.tb02189.x. hdl:2440/15232.
  3. ^ a b Gnanadesikan, R. (1977) Methods for Statistical Data Analysis of Multivariate Observations, Wiley. ISBN 0-471-30845-5 (p. 83–86)
  4. ^ Rao, C.R. (1952) Advanced Statistical Methods in Multivariate Analysis, Wiley. (Section 9c)
  5. ^ Anderson, T.W. (1958) An Introduction to Multivariate Statistical Analysis, Wiley.
  6. ^ Binder, D. A. (1978). "Bayesian cluster analysis". Biometrika. 65: 31–38. doi:10.1093/biomet/65.1.31.
  7. ^ Binder, David A. (1981). "Approximations to Bayesian clustering rules". Biometrika. 68: 275–285. doi:10.1093/biomet/68.1.275.
  8. ^ Har-Peled, S., Roth, D., Zimak, D. (2003) "Constraint Classification for Multiclass Classification and Ranking." In: Becker, B., Thrun, S., Obermayer, K. (Eds) Advances in Neural Information Processing Systems 15: Proceedings of the 2002 Conference, MIT Press. ISBN 0-262-02550-7
  9. ^ "A Tour of The Top 10 Algorithms for Machine Learning Newbies". Built In. 2025-08-05. Retrieved 2025-08-05.
肝肾不足证是什么意思 得了梅毒会有什么症状 变白吃什么 捡到鹦鹉是什么预兆 结膜炎用什么眼药水效果好
念旧的人是什么样的人 离职什么意思 icp是什么意思 抹茶粉是什么做的 小巴西龟吃什么食物
宫崎骏是什么意思 cto是什么职位 2月什么星座 切屏是什么意思 八月节是什么节
神经性耳鸣吃什么药 牙齿根部发黑是什么原因 远房亲戚是什么意思 6月2日什么星座 什么食物补锌
口腔溃疡吃什么药好hcv9jop6ns7r.cn 白细胞低吃什么hcv8jop2ns4r.cn dn是什么意思hcv8jop2ns9r.cn 车挂件挂什么保平安好hcv7jop5ns1r.cn 为什么会有hcv8jop0ns2r.cn
戈谢病是什么病hcv8jop2ns7r.cn 小腿痛什么原因hcv8jop8ns2r.cn 血压和血糖有什么关系hcv8jop5ns5r.cn 停休是什么意思hcv8jop5ns5r.cn 免疫力下降吃什么好hcv9jop1ns7r.cn
都有什么瓜hcv8jop6ns1r.cn 保守治疗是什么意思hcv9jop0ns8r.cn 双子座是什么性格hcv7jop6ns1r.cn 摆拍是什么意思luyiluode.com 生肖猴和什么生肖相冲hcv8jop7ns3r.cn
胸膈痞闷是什么症状yanzhenzixun.com 减肥不能吃什么hcv7jop6ns5r.cn 羊肉与什么食物相克baiqunet.com 儿童拉肚子吃什么药ff14chat.com dsa是什么意思huizhijixie.com
百度