进重症监护室意味什么| 什么是牙槽骨突出图片| 孕妇忌吃什么| 血压低是什么症状| 什么的乌鸦| 喝水就打嗝是什么原因| 花木兰是什么朝代| 石墨烯属于什么材料| 左旋肉碱是什么| 肠梗阻是什么意思| 肺气不足吃什么食物可以补肺气| 婴儿咳嗽用什么药| 上吐下泻吃什么药| 薏米是什么米| 匹夫是什么意思| 孩子睡觉咬牙齿是什么原因引起的| 乳房看什么科| 金牛男最烦什么女孩| 心率过慢有什么危害| 开水冲鸡蛋有什么好处| 吃东西想吐是什么原因| 什么日子适合搬家| 肝火旺失眠吃什么药| 赴汤蹈火的汤是什么意思| 盯眝是什么意思| 什么草药能治痔疮| 什么动什么动| 尹什么意思| 韩信点兵什么意思| 胃部彩超能检查出什么| 轴位是什么意思| bata鞋属于什么档次| 月经不停吃什么药止血效果比较好| 什么是感光食物| led是什么意思| 资产负债率高说明什么| 女性什么时候退休| 蚯蚓中药叫什么| 胎儿胆囊偏大有什么影响| 自愈是什么意思| 榴莲不可以和什么食物一起吃| 家是什么| 金的部首是什么| 草木皆兵指什么生肖| foreverlove是什么意思| 肛周湿疹挂什么科| 出轨是什么意思| aqi是什么| 汉朝后面是什么朝代| ngu是什么意思| 海啸是什么| 梦见着火是什么意思| 小儿舌苔白厚什么原因| 圆脸适合什么短发| 什么可以代替狗狗沐浴露| 酚氨咖敏片的别名叫什么| 泓五行属什么| 9月12日是什么星座| 查摆是什么意思| 为什么牙龈老是出血| 撞车了打什么电话| 女性吃大肠有什么好处| 五味子有什么功效和作用| 中央党校什么级别| 武则天是什么朝代| 艺不压身是什么意思| 鳄鱼怕什么| 1月6号什么星座| 血管硬化吃什么能软化| 痣长什么样| 恋爱是什么感觉| 手指发麻是什么原因引起的| 肛门瘙痒用什么药好| 单元剧是什么意思| 尿检潜血是什么意思| 掉头发是什么原因| 滚去掉三点水念什么| 为什么女人阴唇会变黑| 小孩口臭是什么原因| 体检胸片是检查什么的| 刘少奇属什么生肖| 1956属什么生肖| o型血容易得什么病| 血糖高吃什么肉最好| 喝牛奶不能和什么一起吃| remax是什么牌子| 71年属猪是什么命| 静置是什么意思| 桃胶有什么作用| 拔罐是什么原理| 1974年属虎是什么命| 大便黑绿色是什么原因| 硌得慌是什么意思| 菩提是什么材质| 头总是昏昏沉沉的是什么原因| 大四什么时候毕业| 吕布的武器是什么| 苏打水有什么作用和功效| 柏拉图爱情是什么意思| 嘴臭是什么原因| 过敏性咳嗽用什么药效果好| 蛔虫属于什么动物| 刚做了人流适合吃什么好| 度蜜月什么意思| 普乐安片治什么病| 来例假吃什么水果| 1218是什么星座| 夏天手脱皮是什么原因| 手机信号不好是什么原因| 812是什么意思| 养肝护肝吃什么最好| 梅花手表属于什么档次| 风湿因子高是什么原因引起的| 老人脚肿吃什么药消肿| 什么是乳酸堆积| iq是什么意思| 神经衰弱吃什么药效果最好| 倪妮和倪萍什么关系| 长溃疡是缺什么维生素| 什么是低密度脂蛋白胆固醇| 什么是大三阳| 薄如蝉翼是什么意思| 酗酒什么意思| 利可君片是什么药| 烟酒不沾的人什么性格| 头发油腻是什么原因| 后装治疗是什么意思| 女人腰酸背痛是什么病| 瞳字五行属什么| 牙结石用什么牙膏最好| yair是什么牌子的空调| 孩子咳嗽吃什么药效果好| 禾加术念什么| 带状疱疹用什么药膏| 梦到吃苹果是什么意思| 苏州有什么好玩的地方| 老白茶属于什么茶| 明朝什么时候灭亡| 马克笔什么牌子好| 苗侨伟为什么叫三哥| 安置房和商品房有什么区别| 结核抗体阳性说明什么| 内鬼是什么意思| 有炎症吃什么药| 梦见笑是什么意思| 年金是什么| 保外就医是什么意思| 肝脏低密度影是什么意思| 梦见塌方是什么预兆| 家政是干什么的| 宝宝为什么打嗝| 火龙果和香蕉榨汁有什么功效| 卵泡不破是什么原因| 18年是什么年| 孝是什么| 李子与什么食物相克| 借条和欠条有什么区别| 早上4点是什么时辰| 百香果有什么好处| 肝胆科属于什么科| 狗肚子有虫子吃什么药| 孕妇脚肿是什么原因| cr医学上是什么意思| 外阴病变有什么症状| 汗管瘤用什么药能去掉| 维生素b不能和什么一起吃| 胃酸吃什么能马上缓解| 尿白细胞弱阳性什么意思| 丙辰是什么时辰| 心什么胆什么| 什么来迟| 梦到镯子碎了什么预兆| 过敏性紫癜不能吃什么| 多发淋巴结是什么意思| 竹鼠吃什么| 罘是什么意思| 感染科主要看什么病| 你说什么| 脆生生的什么| 是故是什么意思| 做月子吃什么菜| 阴虚吃什么好| 醉代表什么生肖| 妈妈的姐姐叫什么| 黄花菜不能和什么一起吃| 五行水多代表什么| 数目是什么意思| 看灰指甲挂什么科| 郁郁寡欢是什么意思| caluola手表是什么牌子| usc是什么意思| 小奶猫吃什么| 硕是什么意思| 事后紧急避孕药什么时候吃有效| 睡眠不好吃什么好| 容祖儿老公叫什么名字| 水杯用什么材质的好| 裙子搭配什么鞋子| 口苦口臭挂什么科| 什么品牌镜片好| 梦见被警察抓预示什么| 直接胆红素高是什么病| 韩红是什么民族| 香蕉吃多了有什么坏处| 男人送女人项链代表什么| lanvin是什么牌子| 变格是什么意思| 强迫症是什么意思| 奥利司他是什么药| 为什么感冒会头痛| 新是什么意思| pap是什么意思| 榴莲坏了是什么味道| 孙悟空最后成了什么佛| 为什么早射| 2月24日什么星座| 右眼皮跳是什么预兆| 血友病是什么遗传方式| 下线是什么意思| 刷题是什么意思| 08是什么生肖| bp是什么的缩写| 双开是什么意思| 10.21是什么星座| 什么食物含钾高| 肾虚有什么表现| 乳腺结节是什么症状| 投其所好是什么意思| 玥字五行属什么| 7月9日什么星座| 第一次见面送女生什么花| 利郎男装是什么档次的| 身上长扁平疣是什么原因| 7月去青海带什么衣服| 安然无恙的恙是什么意思| 猪八戒的武器叫什么| 糖尿病的诊断标准是什么| 仁爱是什么意思| 夏季吃桃子有什么好处| 防风通圣颗粒治什么病| vivian是什么意思| 软文什么意思| 喘息是什么意思| 什么样的女人最吸引男人的心| 牙周炎用什么药最见效| 绚丽夺目的意思是什么| 清道夫吃什么| 吃过饭后就想拉大便是什么原因| 为什么一同房就出血| 外地车进北京有什么限制| 尿检隐血弱阳性是什么意思| 月经前尿频是什么原因| 秦时明月什么时候更新| 狼烟是什么意思| 人际关系是什么意思| 早射吃什么药可以调理| 豆角没熟中毒什么症状| 猕猴桃和什么榨汁好喝| 飞行模式有什么用| 霍山黄芽属于什么茶| 脑供血不足会导致什么后果| 6月21是什么星座| 黑白相间的蛇是什么蛇| ngu是什么意思| 百度

攻克高难险整治牛皮癣 杆石桥二期违法户外广告全拆除

(Redirected from Mathematical optimisation)
百度 集团通过整合资金、政策、人才、设备、管理及区域合作等资源,持续推进康复医疗服务的专业化,不断创新、优化管理运营模式,发展成为中国领先的康复医疗服务运营商。

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives.[1][2] It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering[3] to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.[4]

Graph of a surface given by z = f(x, y) = ?(x2 + y2) + 4. The global maximum at (x, y, z) = (0, 0, 4) is indicated by a blue dot.
Nelder-Mead minimum search of Simionescu's function. Simplex vertices are ordered by their values, with 1 having the lowest ( best) value.

In the more general approach, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics.

Optimization problems

edit

Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete:

An optimization problem can be represented in the following way:

Given: a function   from some set A to the real numbers
Sought: an element x0A such that f(x0) ≤ f(x) for all xA ("minimization") or such that f(x0) ≥ f(x) for all xA ("maximization").

Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework.

Since the following is valid:

 

it suffices to solve only minimization problems. However, the opposite perspective of considering only maximization problems would be valid, too.

Problems formulated using this technique in the fields of physics may refer to the technique as energy minimization,[5] speaking of the value of the function f as representing the energy of the system being modeled. In machine learning, it is always necessary to continuously evaluate the quality of a data model by using a cost function where a minimum implies a set of possibly optimal parameters with an optimal (lowest) error.

Typically, A is some subset of the Euclidean space  , often specified by a set of constraints, equalities or inequalities that the members of A have to satisfy. The domain A of f is called the search space or the choice set, while the elements of A are called candidate solutions or feasible solutions.

The function f is variously called an objective function, criterion function, loss function, cost function (minimization),[6] utility function or fitness function (maximization), or, in certain fields, an energy function or energy functional. A feasible solution that minimizes (or maximizes) the objective function is called an optimal solution.

In mathematics, conventional optimization problems are usually stated in terms of minimization.

A local minimum x* is defined as an element for which there exists some δ > 0 such that

 

the expression f(x*) ≤ f(x) holds;

that is to say, on some region around x* all of the function values are greater than or equal to the value at that element. Local maxima are defined similarly.

While a local minimum is at least as good as any nearby elements, a global minimum is at least as good as every feasible element. Generally, unless the objective function is convex in a minimization problem, there may be several local minima. In a convex problem, if there is a local minimum that is interior (not on the edge of the set of feasible elements), it is also the global minimum, but a nonconvex problem may have more than one local minimum not all of which need be global minima.

A large number of algorithms proposed for solving the nonconvex problems – including the majority of commercially available solvers – are not capable of making a distinction between locally optimal solutions and globally optimal solutions, and will treat the former as actual solutions to the original problem. Global optimization is the branch of applied mathematics and numerical analysis that is concerned with the development of deterministic algorithms that are capable of guaranteeing convergence in finite time to the actual optimal solution of a nonconvex problem.

Notation

edit

Optimization problems are often expressed with special notation. Here are some examples:

Minimum and maximum value of a function

edit

Consider the following notation:

 

This denotes the minimum value of the objective function x2 + 1, when choosing x from the set of real numbers  . The minimum value in this case is 1, occurring at x = 0.

Similarly, the notation

 

asks for the maximum value of the objective function 2x, where x may be any real number. In this case, there is no such maximum as the objective function is unbounded, so the answer is "infinity" or "undefined".

Optimal input arguments

edit

Consider the following notation:

 

or equivalently

 

This represents the value (or values) of the argument x in the interval (?∞,?1] that minimizes (or minimize) the objective function x2 + 1 (the actual minimum value of that function is not what the problem asks for). In this case, the answer is x = ?1, since x = 0 is infeasible, that is, it does not belong to the feasible set.

Similarly,

 

or equivalently

 

represents the {x, y} pair (or pairs) that maximizes (or maximize) the value of the objective function x cos y, with the added constraint that x lie in the interval [?5,5] (again, the actual maximum value of the expression does not matter). In this case, the solutions are the pairs of the form {5, 2kπ} and {?5, (2k + 1)π}, where k ranges over all integers.

Operators arg min and arg max are sometimes also written as argmin and argmax, and stand for argument of the minimum and argument of the maximum.

History

edit

Fermat and Lagrange found calculus-based formulae for identifying optima, while Newton and Gauss proposed iterative methods for moving towards an optimum.

The term "linear programming" for certain optimization cases was due to George B. Dantzig, although much of the theory had been introduced by Leonid Kantorovich in 1939. (Programming in this context does not refer to computer programming, but comes from the use of program by the United States military to refer to proposed training and logistics schedules, which were the problems Dantzig studied at that time.) Dantzig published the Simplex algorithm in 1947, and also John von Neumann and other researchers worked on the theoretical aspects of linear programming (like the theory of duality) around the same time.[7]

Other notable researchers in mathematical optimization include the following:

Major subfields

edit
  • Convex programming studies the case when the objective function is convex (minimization) or concave (maximization) and the constraint set is convex. This can be viewed as a particular case of nonlinear programming or as generalization of linear or convex quadratic programming.
    • Linear programming (LP), a type of convex programming, studies the case in which the objective function f is linear and the constraints are specified using only linear equalities and inequalities. Such a constraint set is called a polyhedron or a polytope if it is bounded.
    • Second-order cone programming (SOCP) is a convex program, and includes certain types of quadratic programs.
    • Semidefinite programming (SDP) is a subfield of convex optimization where the underlying variables are semidefinite matrices. It is a generalization of linear and convex quadratic programming.
    • Conic programming is a general form of convex programming. LP, SOCP and SDP can all be viewed as conic programs with the appropriate type of cone.
    • Geometric programming is a technique whereby objective and inequality constraints expressed as posynomials and equality constraints as monomials can be transformed into a convex program.
  • Integer programming studies linear programs in which some or all variables are constrained to take on integer values. This is not convex, and in general much more difficult than regular linear programming.
  • Quadratic programming allows the objective function to have quadratic terms, while the feasible set must be specified with linear equalities and inequalities. For specific forms of the quadratic term, this is a type of convex programming.
  • Fractional programming studies optimization of ratios of two nonlinear functions. The special class of concave fractional programs can be transformed to a convex optimization problem.
  • Nonlinear programming studies the general case in which the objective function or the constraints or both contain nonlinear parts. This may or may not be a convex program. In general, whether the program is convex affects the difficulty of solving it.
  • Stochastic programming studies the case in which some of the constraints or parameters depend on random variables.
  • Robust optimization is, like stochastic programming, an attempt to capture uncertainty in the data underlying the optimization problem. Robust optimization aims to find solutions that are valid under all possible realizations of the uncertainties defined by an uncertainty set.
  • Combinatorial optimization is concerned with problems where the set of feasible solutions is discrete or can be reduced to a discrete one.
  • Stochastic optimization is used with random (noisy) function measurements or random inputs in the search process.
  • Infinite-dimensional optimization studies the case when the set of feasible solutions is a subset of an infinite-dimensional space, such as a space of functions.
  • Heuristics and metaheuristics make few or no assumptions about the problem being optimized. Usually, heuristics do not guarantee that any optimal solution need be found. On the other hand, heuristics are used to find approximate solutions for many complicated optimization problems.
  • Constraint satisfaction studies the case in which the objective function f is constant (this is used in artificial intelligence, particularly in automated reasoning).
    • Constraint programming is a programming paradigm wherein relations between variables are stated in the form of constraints.
  • Disjunctive programming is used where at least one constraint must be satisfied but not all. It is of particular use in scheduling.
  • Space mapping is a concept for modeling and optimization of an engineering system to high-fidelity (fine) model accuracy exploiting a suitable physically meaningful coarse or surrogate model.

In a number of subfields, the techniques are designed primarily for optimization in dynamic contexts (that is, decision making over time):

Multi-objective optimization

edit

Adding more than one objective to an optimization problem adds complexity. For example, to optimize a structural design, one would desire a design that is both light and rigid. When two objectives conflict, a trade-off must be created. There may be one lightest design, one stiffest design, and an infinite number of designs that are some compromise of weight and rigidity. The set of trade-off designs that improve upon one criterion at the expense of another is known as the Pareto set. The curve created plotting weight against stiffness of the best designs is known as the Pareto frontier.

A design is judged to be "Pareto optimal" (equivalently, "Pareto efficient" or in the Pareto set) if it is not dominated by any other design: If it is worse than another design in some respects and no better in any respect, then it is dominated and is not Pareto optimal.

The choice among "Pareto optimal" solutions to determine the "favorite solution" is delegated to the decision maker. In other words, defining the problem as multi-objective optimization signals that some information is missing: desirable objectives are given but combinations of them are not rated relative to each other. In some cases, the missing information can be derived by interactive sessions with the decision maker.

Multi-objective optimization problems have been generalized further into vector optimization problems where the (partial) ordering is no longer given by the Pareto ordering.

Multi-modal or global optimization

edit

Optimization problems are often multi-modal; that is, they possess multiple good solutions. They could all be globally good (same cost function value) or there could be a mix of globally good and locally good solutions. Obtaining all (or at least some of) the multiple solutions is the goal of a multi-modal optimizer.

Classical optimization techniques due to their iterative approach do not perform satisfactorily when they are used to obtain multiple solutions, since it is not guaranteed that different solutions will be obtained even with different starting points in multiple runs of the algorithm.

Common approaches to global optimization problems, where multiple local extrema may be present include evolutionary algorithms, Bayesian optimization and simulated annealing.

Classification of critical points and extrema

edit

Feasibility problem

edit

The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.

Many optimization algorithms need to start from a feasible point. One way to obtain such a point is to relax the feasibility conditions using a slack variable; with enough slack, any starting point is feasible. Then, minimize that slack variable until the slack is null or negative.

Existence

edit

The extreme value theorem of Karl Weierstrass states that a continuous real-valued function on a compact set attains its maximum and minimum value. More generally, a lower semi-continuous function on a compact set attains its minimum; an upper semi-continuous function on a compact set attains its maximum point or view.

Necessary conditions for optimality

edit

One of Fermat's theorems states that optima of unconstrained problems are found at stationary points, where the first derivative or the gradient of the objective function is zero (see first derivative test). More generally, they may be found at critical points, where the first derivative or gradient of the objective function is zero or is undefined, or on the boundary of the choice set. An equation (or set of equations) stating that the first derivative(s) equal(s) zero at an interior optimum is called a 'first-order condition' or a set of first-order conditions.

Optima of equality-constrained problems can be found by the Lagrange multiplier method. The optima of problems with equality and/or inequality constraints can be found using the 'Karush–Kuhn–Tucker conditions'.

Sufficient conditions for optimality

edit

While the first derivative test identifies points that might be extrema, this test does not distinguish a point that is a minimum from one that is a maximum or one that is neither. When the objective function is twice differentiable, these cases can be distinguished by checking the second derivative or the matrix of second derivatives (called the Hessian matrix) in unconstrained problems, or the matrix of second derivatives of the objective function and the constraints called the bordered Hessian in constrained problems. The conditions that distinguish maxima, or minima, from other stationary points are called 'second-order conditions' (see 'Second derivative test'). If a candidate solution satisfies the first-order conditions, then the satisfaction of the second-order conditions as well is sufficient to establish at least local optimality.

Sensitivity and continuity of optima

edit

The envelope theorem describes how the value of an optimal solution changes when an underlying parameter changes. The process of computing this change is called comparative statics.

The maximum theorem of Claude Berge (1963) describes the continuity of an optimal solution as a function of underlying parameters.

Calculus of optimization

edit

For unconstrained problems with twice-differentiable functions, some critical points can be found by finding the points where the gradient of the objective function is zero (that is, the stationary points). More generally, a zero subgradient certifies that a local minimum has been found for minimization problems with convex functions and other locally Lipschitz functions, which meet in loss function minimization of the neural network. The positive-negative momentum estimation lets to avoid the local minimum and converges at the objective function global minimum.[8]

Further, critical points can be classified using the definiteness of the Hessian matrix: If the Hessian is positive definite at a critical point, then the point is a local minimum; if the Hessian matrix is negative definite, then the point is a local maximum; finally, if indefinite, then the point is some kind of saddle point.

Constrained problems can often be transformed into unconstrained problems with the help of Lagrange multipliers. Lagrangian relaxation can also provide approximate solutions to difficult constrained problems.

When the objective function is a convex function, then any local minimum will also be a global minimum. There exist efficient numerical techniques for minimizing convex functions, such as interior-point methods.

Global convergence

edit

More generally, if the objective function is not a quadratic function, then many optimization methods use other methods to ensure that some subsequence of iterations converges to an optimal solution. The first and still popular method for ensuring convergence relies on line searches, which optimize a function along one dimension. A second and increasingly popular method for ensuring convergence uses trust regions. Both line searches and trust regions are used in modern methods of non-differentiable optimization. Usually, a global optimizer is much slower than advanced local optimizers (such as BFGS), so often an efficient global optimizer can be constructed by starting the local optimizer from different starting points.

Computational optimization techniques

edit

To solve problems, researchers may use algorithms that terminate in a finite number of steps, or iterative methods that converge to a solution (on some specified class of problems), or heuristics that may provide approximate solutions to some problems (although their iterates need not converge).

Optimization algorithms

edit

Iterative methods

edit

The iterative methods used to solve problems of nonlinear programming differ according to whether they evaluate Hessians, gradients, or only function values. While evaluating Hessians (H) and gradients (G) improves the rate of convergence, for functions for which these quantities exist and vary sufficiently smoothly, such evaluations increase the computational complexity (or computational cost) of each iteration. In some cases, the computational complexity may be excessively high.

One major criterion for optimizers is just the number of required function evaluations as this often is already a large computational effort, usually much more effort than within the optimizer itself, which mainly has to operate over the N variables. The derivatives provide detailed information for such optimizers, but are even harder to calculate, e.g. approximating the gradient takes at least N+1 function evaluations. For approximations of the 2nd derivatives (collected in the Hessian matrix), the number of function evaluations is in the order of N2. Newton's method requires the 2nd-order derivatives, so for each iteration, the number of function calls is in the order of N2, but for a simpler pure gradient optimizer it is only N. However, gradient optimizers need usually more iterations than Newton's algorithm. Which one is best with respect to the number of function calls depends on the problem itself.

  • Methods that evaluate Hessians (or approximate Hessians, using finite differences):
    • Newton's method
    • Sequential quadratic programming: A Newton-based method for small-medium scale constrained problems. Some versions can handle large-dimensional problems.
    • Interior point methods: This is a large class of methods for constrained optimization, some of which use only (sub)gradient information and others of which require the evaluation of Hessians.
  • Methods that evaluate gradients, or approximate gradients in some way (or even subgradients):
    • Coordinate descent methods: Algorithms which update a single coordinate in each iteration
    • Conjugate gradient methods: Iterative methods for large problems. (In theory, these methods terminate in a finite number of steps with quadratic objective functions, but this finite termination is not observed in practice on finite–precision computers.)
    • Gradient descent (alternatively, "steepest descent" or "steepest ascent"): A (slow) method of historical and theoretical interest, which has had renewed interest for finding approximate solutions of enormous problems.
    • Subgradient methods: An iterative method for large locally Lipschitz functions using generalized gradients. Following Boris T. Polyak, subgradient–projection methods are similar to conjugate–gradient methods.
    • Bundle method of descent: An iterative method for small–medium-sized problems with locally Lipschitz functions, particularly for convex minimization problems (similar to conjugate gradient methods).
    • Ellipsoid method: An iterative method for small problems with quasiconvex objective functions and of great theoretical interest, particularly in establishing the polynomial time complexity of some combinatorial optimization problems. It has similarities with Quasi-Newton methods.
    • Conditional gradient method (Frank–Wolfe) for approximate minimization of specially structured problems with linear constraints, especially with traffic networks. For general unconstrained problems, this method reduces to the gradient method, which is regarded as obsolete (for almost all problems).
    • Quasi-Newton methods: Iterative methods for medium-large problems (e.g. N<1000).
    • Simultaneous perturbation stochastic approximation (SPSA) method for stochastic optimization; uses random (efficient) gradient approximation.
  • Methods that evaluate only function values: If a problem is continuously differentiable, then gradients can be approximated using finite differences, in which case a gradient-based method can be used.

Heuristics

edit

Besides (finitely terminating) algorithms and (convergent) iterative methods, there are heuristics. A heuristic is any algorithm which is not guaranteed (mathematically) to find the solution, but which is nevertheless useful in certain practical situations. List of some well-known heuristics:

Applications

edit

Mechanics

edit

Problems in rigid body dynamics (in particular articulated rigid body dynamics) often require mathematical programming techniques, since you can view rigid body dynamics as attempting to solve an ordinary differential equation on a constraint manifold;[9] the constraints are various nonlinear geometric constraints such as "these two points must always coincide", "this surface must not penetrate any other", or "this point must always lie somewhere on this curve". Also, the problem of computing contact forces can be done by solving a linear complementarity problem, which can also be viewed as a QP (quadratic programming) problem.

Many design problems can also be expressed as optimization programs. This application is called design optimization. One subset is the engineering optimization, and another recent and growing subset of this field is multidisciplinary design optimization, which, while useful in many problems, has in particular been applied to aerospace engineering problems.

This approach may be applied in cosmology and astrophysics.[10]

Economics and finance

edit

Economics is closely enough linked to optimization of agents that an influential definition relatedly describes economics qua science as the "study of human behavior as a relationship between ends and scarce means" with alternative uses.[11] Modern optimization theory includes traditional optimization theory but also overlaps with game theory and the study of economic equilibria. The Journal of Economic Literature codes classify mathematical programming, optimization techniques, and related topics under JEL:C61-C63.

In microeconomics, the utility maximization problem and its dual problem, the expenditure minimization problem, are economic optimization problems. Insofar as they behave consistently, consumers are assumed to maximize their utility, while firms are usually assumed to maximize their profit. Also, agents are often modeled as being risk-averse, thereby preferring to avoid risk. Asset prices are also modeled using optimization theory, though the underlying mathematics relies on optimizing stochastic processes rather than on static optimization. International trade theory also uses optimization to explain trade patterns between nations. The optimization of portfolios is an example of multi-objective optimization in economics.

Since the 1970s, economists have modeled dynamic decisions over time using control theory.[12] For example, dynamic search models are used to study labor-market behavior.[13] A crucial distinction is between deterministic and stochastic models.[14] Macroeconomists build dynamic stochastic general equilibrium (DSGE) models that describe the dynamics of the whole economy as the result of the interdependent optimizing decisions of workers, consumers, investors, and governments.[15][16]

Electrical engineering

edit

Some common applications of optimization techniques in electrical engineering include active filter design,[17] stray field reduction in superconducting magnetic energy storage systems, space mapping design of microwave structures,[18] handset antennas,[19][20][21] electromagnetics-based design. Electromagnetically validated design optimization of microwave components and antennas has made extensive use of an appropriate physics-based or empirical surrogate model and space mapping methodologies since the discovery of space mapping in 1993.[22][23] Optimization techniques are also used in power-flow analysis.[24]

Civil engineering

edit

Optimization has been widely used in civil engineering. Construction management and transportation engineering are among the main branches of civil engineering that heavily rely on optimization. The most common civil engineering problems that are solved by optimization are cut and fill of roads, life-cycle analysis of structures and infrastructures,[25] resource leveling,[26][27] water resource allocation, traffic management[28] and schedule optimization.

Operations research

edit

Another field that uses optimization techniques extensively is operations research.[29] Operations research also uses stochastic modeling and simulation to support improved decision-making. Increasingly, operations research uses stochastic programming to model dynamic decisions that adapt to events; such problems can be solved with large-scale optimization and stochastic optimization methods.

Control engineering

edit

Mathematical optimization is used in much modern controller design. High-level controllers such as model predictive control (MPC) or real-time optimization (RTO) employ mathematical optimization. These algorithms run online and repeatedly determine values for decision variables, such as choke openings in a process plant, by iteratively solving a mathematical optimization problem including constraints and a model of the system to be controlled.

Geophysics

edit

Optimization techniques are regularly used in geophysical parameter estimation problems. Given a set of geophysical measurements, e.g. seismic recordings, it is common to solve for the physical properties and geometrical shapes of the underlying rocks and fluids. The majority of problems in geophysics are nonlinear with both deterministic and stochastic methods being widely used.

Molecular modeling

edit

Nonlinear optimization methods are widely used in conformational analysis.

Computational systems biology

edit

Optimization techniques are used in many facets of computational systems biology such as model building, optimal experimental design, metabolic engineering, and synthetic biology.[30] Linear programming has been applied to calculate the maximal possible yields of fermentation products,[30] and to infer gene regulatory networks from multiple microarray datasets[31] as well as transcriptional regulatory networks from high-throughput data.[32] Nonlinear programming has been used to analyze energy metabolism[33] and has been applied to metabolic engineering and parameter estimation in biochemical pathways.[34]

Machine learning

edit

Solvers

edit

See also

edit

Notes

edit
  1. ^ "The Nature of Mathematical Programming Archived 2025-08-05 at the Wayback Machine," Mathematical Programming Glossary, INFORMS Computing Society.
  2. ^ "Mathematical Programming: An Overview" (PDF). Retrieved 26 April 2024.
  3. ^ Martins, Joaquim R. R. A.; Ning, Andrew (2025-08-05). Engineering Design Optimization. Cambridge University Press. ISBN 978-1108833417.
  4. ^ Du, D. Z.; Pardalos, P. M.; Wu, W. (2008). "History of Optimization". In Floudas, C.; Pardalos, P. (eds.). Encyclopedia of Optimization. Boston: Springer. pp. 1538–1542.
  5. ^ Hartmann, Alexander K; Rieger, Heiko (2002). Optimization algorithms in physics. Citeseer.
  6. ^ Erwin Diewert, W. (2017), "Cost Functions", The New Palgrave Dictionary of Economics, London: Palgrave Macmillan UK, pp. 1–12, doi:10.1057/978-1-349-95121-5_659-2, ISBN 978-1-349-95121-5, retrieved 2025-08-05
  7. ^ Bixby, Robert E (2012). "A brief history of linear and mixed-integer programming computation" (PDF). Documenta Mathematica. Documenta Mathematica Series. 2012: 107–121. doi:10.4171/dms/6/16. ISBN 978-3-936609-58-5.
  8. ^ Abdulkadirov, R.; Lyakhov, P.; Bergerman, M.; Reznikov, D. (February 2024). "Satellite image recognition using ensemble neural networks and difference gradient positive-negative momentum". Chaos, Solitons & Fractals. 179 114432. Bibcode:2024CSF...17914432A. doi:10.1016/j.chaos.2023.114432.
  9. ^ Vereshchagin, A.F. (1989). "Modelling and control of motion of manipulation robots". Soviet Journal of Computer and Systems Sciences. 27 (5): 29–38.
  10. ^ Haggag, S.; Desokey, F.; Ramadan, M. (2017). "A cosmological inflationary model using optimal control". Gravitation and Cosmology. 23 (3): 236–239. Bibcode:2017GrCo...23..236H. doi:10.1134/S0202289317030069. ISSN 1995-0721. S2CID 125980981.
  11. ^ Lionel Robbins (1935, 2nd ed.) An Essay on the Nature and Significance of Economic Science, Macmillan, p. 16.
  12. ^ Dorfman, Robert (1969). "An Economic Interpretation of Optimal Control Theory". American Economic Review. 59 (5): 817–831. JSTOR 1810679.
  13. ^ Sargent, Thomas J. (1987). "Search". Dynamic Macroeconomic Theory. Harvard University Press. pp. 57–91. ISBN 9780674043084.
  14. ^ A.G. Malliaris (2008). "stochastic optimal control," The New Palgrave Dictionary of Economics, 2nd Edition. Abstract Archived 2025-08-05 at the Wayback Machine.
  15. ^ Rotemberg, Julio; Woodford, Michael (1997). "An Optimization-based Econometric Framework for the Evaluation of Monetary Policy" (PDF). NBER Macroeconomics Annual. 12: 297–346. doi:10.2307/3585236. JSTOR 3585236.
  16. ^ From The New Palgrave Dictionary of Economics (2008), 2nd Edition with Abstract links:
    ? "numerical optimization methods in economics" by Karl Schmedders
    ? "convex programming" by Lawrence E. Blume
    ? "Arrow–Debreu model of general equilibrium" by John Geanakoplos.
  17. ^ De, Bishnu Prasad; Kar, R.; Mandal, D.; Ghoshal, S.P. (2025-08-05). "Optimal selection of components value for analog active filter design using simplex particle swarm optimization". International Journal of Machine Learning and Cybernetics. 6 (4): 621–636. doi:10.1007/s13042-014-0299-0. ISSN 1868-8071. S2CID 13071135.
  18. ^ Koziel, Slawomir; Bandler, John W. (January 2008). "Space Mapping With Multiple Coarse Models for Optimization of Microwave Components". IEEE Microwave and Wireless Components Letters. 18 (1): 1–3. Bibcode:2008IMWCL..18L1969K. CiteSeerX 10.1.1.147.5407. doi:10.1109/LMWC.2007.911969. S2CID 11086218.
  19. ^ Tu, Sheng; Cheng, Qingsha S.; Zhang, Yifan; Bandler, John W.; Nikolova, Natalia K. (July 2013). "Space Mapping Optimization of Handset Antennas Exploiting Thin-Wire Models". IEEE Transactions on Antennas and Propagation. 61 (7): 3797–3807. Bibcode:2013ITAP...61.3797T. doi:10.1109/TAP.2013.2254695.
  20. ^ N. Friedrich, “Space mapping outpaces EM optimization in handset-antenna design,” microwaves&rf, August 30, 2013.
  21. ^ Cervantes-González, Juan C.; Rayas-Sánchez, José E.; López, Carlos A.; Camacho-Pérez, José R.; Brito-Brito, Zabdiel; Chávez-Hurtado, José L. (February 2016). "Space mapping optimization of handset antennas considering EM effects of mobile phone components and human body". International Journal of RF and Microwave Computer-Aided Engineering. 26 (2): 121–128. doi:10.1002/mmce.20945. S2CID 110195165.
  22. ^ Bandler, J.W.; Biernacki, R.M.; Chen, Shao Hua; Grobelny, P.A.; Hemmers, R.H. (1994). "Space mapping technique for electromagnetic optimization". IEEE Transactions on Microwave Theory and Techniques. 42 (12): 2536–2544. Bibcode:1994ITMTT..42.2536B. doi:10.1109/22.339794.
  23. ^ Bandler, J.W.; Biernacki, R.M.; Shao Hua Chen; Hemmers, R.H.; Madsen, K. (1995). "Electromagnetic optimization exploiting aggressive space mapping". IEEE Transactions on Microwave Theory and Techniques. 43 (12): 2874–2882. Bibcode:1995ITMTT..43.2874B. doi:10.1109/22.475649.
  24. ^ Convex relaxation of optimal power flow: A tutorial. 2013 iREP Symposium on Bulk Power System Dynamics and Control. doi:10.1109/IREP.2013.6629391.
  25. ^ Piryonesi, Sayed Madeh; Tavakolan, Mehdi (9 January 2017). "A mathematical programming model for solving cost-safety optimization (CSO) problems in the maintenance of structures". KSCE Journal of Civil Engineering. 21 (6): 2226–2234. Bibcode:2017KSJCE..21.2226P. doi:10.1007/s12205-017-0531-z. S2CID 113616284.
  26. ^ Hegazy, Tarek (June 1999). "Optimization of Resource Allocation and Leveling Using Genetic Algorithms". Journal of Construction Engineering and Management. 125 (3): 167–175. doi:10.1061/(ASCE)0733-9364(1999)125:3(167).
  27. ^ Piryonesi, S. Madeh; Nasseri, Mehran; Ramezani, Abdollah (9 July 2018). "Piryonesi, S. M., Nasseri, M., & Ramezani, A. (2018). Resource leveling in construction projects with activity splitting and resource constraints: a simulated annealing optimization". Canadian Journal of Civil Engineering. 46: 81–86. doi:10.1139/cjce-2017-0670. hdl:1807/93364. S2CID 116480238.
  28. ^ Herty, M.; Klar, A. (2025-08-05). "Modeling, Simulation, and Optimization of Traffic Flow Networks". SIAM Journal on Scientific Computing. 25 (3): 1066–1087. Bibcode:2003SJSC...25.1066H. doi:10.1137/S106482750241459X. ISSN 1064-8275.
  29. ^ "New force on the political scene: the Seophonisten". Archived from the original on 18 December 2014. Retrieved 14 September 2013.
  30. ^ a b Papoutsakis, Eleftherios Terry (February 1984). "Equations and calculations for fermentations of butyric acid bacteria". Biotechnology and Bioengineering. 26 (2): 174–187. Bibcode:1984BiotB..26..174P. doi:10.1002/bit.260260210. ISSN 0006-3592. PMID 18551704. S2CID 25023799.
  31. ^ Wang, Yong; Joshi, Trupti; Zhang, Xiang-Sun; Xu, Dong; Chen, Luonan (2025-08-05). "Inferring gene regulatory networks from multiple microarray datasets". Bioinformatics. 22 (19): 2413–2420. doi:10.1093/bioinformatics/btl396. ISSN 1460-2059. PMID 16864593.
  32. ^ Wang, Rui-Sheng; Wang, Yong; Zhang, Xiang-Sun; Chen, Luonan (2025-08-05). "Inferring transcriptional regulatory networks from high-throughput data". Bioinformatics. 23 (22): 3056–3064. doi:10.1093/bioinformatics/btm465. ISSN 1460-2059. PMID 17890736.
  33. ^ Vo, Thuy D.; Paul Lee, W.N.; Palsson, Bernhard O. (May 2007). "Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh's syndrome". Molecular Genetics and Metabolism. 91 (1): 15–22. doi:10.1016/j.ymgme.2007.01.012. ISSN 1096-7192. PMID 17336115.
  34. ^ Mendes, P.; Kell, D. (1998). "Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation". Bioinformatics. 14 (10): 869–883. doi:10.1093/bioinformatics/14.10.869. ISSN 1367-4803. PMID 9927716.

Further reading

edit
  • Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization. Cambridge: Cambridge University Press. ISBN 0-521-83378-7.
  • Gill, P. E.; Murray, W.; Wright, M. H. (1982). Practical Optimization. London: Academic Press. ISBN 0-12-283952-8.
  • Lee, Jon (2004). A First Course in Combinatorial Optimization. Cambridge University Press. ISBN 0-521-01012-8.
  • Nocedal, Jorge; Wright, Stephen J. (2006). Numerical Optimization (2nd ed.). Berlin: Springer. ISBN 0-387-30303-0.
  • G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (eds.): Optimization, Elsevier, (1989).
  • Stanislav Walukiewicz:Integer Programming, Springer,ISBN 978-9048140688, (1990).
  • R. Fletcher: Practical Methods of Optimization, 2nd Ed., Wiley, (2000).
  • Panos M. Pardalos:Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems, Springer,ISBN 978-1-44194829-8, (2000).
  • Xiaoqi Yang, K. L. Teo, Lou Caccetta (Eds.):Optimization Methods and Applications,Springer, ISBN 978-0-79236866-3, (2001).
  • Panos M. Pardalos, and Mauricio G. C. Resende(Eds.):Handbook of Applied Optimization、Oxford Univ Pr on Demand, ISBN 978-0-19512594-8, (2002).
  • Wil Michiels, Emile Aarts, and Jan Korst: Theoretical Aspects of Local Search, Springer, ISBN 978-3-64207148-5, (2006).
  • Der-San Chen, Robert G. Batson, and Yu Dang: Applied Integer Programming: Modeling and Solution,Wiley,ISBN 978-0-47037306-4, (2010).
  • Mykel J. Kochenderfer and Tim A. Wheeler: Algorithms for Optimization, The MIT Press, ISBN 978-0-26203942-0, (2019).
  • Vladislav Bukshtynov: Optimization: Success in Practice, CRC Press (Taylor & Francis), ISBN 978-1-03222947-8, (2023) .
  • Rosario Toscano: Solving Optimization Problems with the Heuristic Kalman Algorithm: New Stochastic Methods, Springer, ISBN 978-3-031-52458-5 (2024).
  • Immanuel M. Bomze, Tibor Csendes, Reiner Horst and Panos M. Pardalos: Developments in Global Optimization, Kluwer Academic, ISBN 978-1-4419-4768-0 (2010).
edit
兔子肉不能和什么一起吃 冠心病有什么症状 降头是什么意思 0什么意思 气血亏虚吃什么中成药
乳腺增生样改变是什么意思 李咏什么病 脱发挂什么科 1026什么星座 肺癌晚期什么症状
支气管炎是什么引起的 核磁共振是什么 鸟屎掉衣服上有什么预兆 做包皮挂什么科 肠腔积气是什么原因
凌厉是什么意思 什么是血尿 抓包是什么意思 php是什么语言 牡丹和芍药有什么区别
子宫内膜厚吃什么药clwhiglsz.com 芒果和什么不能一起吃0297y7.com 一级甲等医院是什么意思xscnpatent.com 送同学什么生日礼物好baiqunet.com 左胸上方隐痛什么原因hcv9jop4ns4r.cn
梦见偷桃子是什么意思hcv8jop1ns0r.cn 灵长类是什么意思huizhijixie.com 怀女孩有什么征兆hcv7jop9ns2r.cn 一什么彩虹clwhiglsz.com 戌是什么意思liaochangning.com
喝完酒头疼是什么原因bjhyzcsm.com 萎缩性胃炎能吃什么水果youbangsi.com 心与什么相表里bjhyzcsm.com 一只脚心疼是什么原因hcv8jop2ns1r.cn 肥肠烧什么配菜好吃hcv9jop5ns8r.cn
阴道痛什么原因hcv9jop0ns8r.cn 眼角痒用什么眼药水hcv8jop2ns7r.cn 利润是什么hcv9jop5ns5r.cn 既寿永昌什么意思hcv8jop6ns6r.cn 恭请是什么意思hcv8jop4ns4r.cn
百度