吃深海鱼油有什么好处和坏处| 女人阴虚火旺吃什么药| 全飞秒手术是什么| 七八年属什么| 人怕冷是什么原因引起的| 太阳鱼吃什么食物| 附件炎有什么症状| 牛的本命佛是什么佛| 头晕呕吐是什么原因| 胆囊粗糙是什么意思| 灰绿色是什么颜色| 前降支中段心肌桥什么意思| 汀是什么意思| 吃什么对胃好| 老佛爷是什么意思| 腹水是什么| hpv16阳性有什么症状| 梦见被追杀是什么预兆| 相知相惜是什么意思| 关节疼挂什么科| 男人头发硬说明什么| 天蝎座跟什么星座最配| 男票是什么意思| 化险为夷的夷什么意思| 2022年属什么生肖| 李子吃了有什么好处| 窝边草是什么意思| 推崇是什么意思| 肌酸激酶高是什么原因| 肌张力是什么意思| 童五行属什么| 璠字取名寓意什么| 尿路感染吃什么药最好| 木耳吃多了有什么坏处| 娘娘命是什么样的命| 下午两点多是什么时辰| 痰湿瘀阻是什么症状| 男人喜欢什么姿势| 什么是相向而行| 萤火虫为什么会发光简单回答| 下肢水肿是什么原因| 分解酒精的是什么酶| 阴唇发黑是什么原因| 白羊座和什么星座最配| 喝酒后头疼是什么原因| 支原体吃什么药好得快| 便秘什么原因引起的| hold住是什么意思| 口干口苦吃什么中成药| 请问尿路感染吃什么药最好| 化疗之后吃什么好| 脂蛋白a高是什么原因| 半夜醒来睡不着是什么原因| 杀青了是什么意思| 胰腺炎吃什么中成药| agoni什么意思| 为什么会头痛| 身上长小红点是什么原因| 破伤风伤口有什么症状| 水落石出是什么生肖| 灰指甲有什么危害| cot什么意思| 梦见好多葡萄是什么意思| 对酒当歌是什么生肖| 尬是什么意思| 医美是什么专业| 什么时候跳绳减肥效果最好| 左什么右什么| apl医学上是什么意思| 1977年是什么命| 男人阴茎硬不起来是什么原因| 舌苔厚黄吃什么药| 女性什么时候绝经| 榴莲什么时候最便宜| 右手手指头麻木是什么病的前兆| 去三亚穿什么衣服合适| 自由职业可以做什么| 吃什么东西最营养| 男人好难做人好难是什么歌| 身份证后4位代表什么| ru是什么意思| 肌酐为什么会升高| 秦朝灭亡后是什么朝代| 孕妇吃什么容易滑胎| 颜值控是什么意思| 什么是童子| 髋关节弹响是什么原因| 9月10日什么星座| 痛风什么引起的原因有哪些| 健康证需要检查什么项目| 高考450分能上什么学校| 感恩节为什么要吃火鸡| 女人小便出血是什么原因| 晚上9点多是什么时辰| 为什么一吃饭就拉肚子| 蛰伏是什么意思| 派特ct主要检查什么| 珏字五行属什么| 气不够用是什么原因| 什么头什么气| 心字底的字与什么有关| 229什么星座| 边界清是什么意思| 凌波仙子指的是什么花| 一个土一个斤念什么| 洗澡用什么香皂好| 睡觉时胳膊和手发麻是什么原因| 2014年属什么生肖| 血糖高喝什么牛奶好| 什么是地中海饮食| 流理台是什么| 小确幸什么意思| bml是什么| 来例假可以吃什么水果| opt是什么| 甲壳素是什么东西| 猫传腹是什么病| 弱智是什么意思| 为什么眼皮一直跳| 传导阻滞吃什么药| 苏铁是什么植物| 足字旁的字跟什么有关| 为什么要打破伤风| 乌龟的天敌是什么动物| 手麻木吃什么药| 一带一路是指什么| 属蛇的贵人是什么属相| 吃什么东西可以长高| 小姐的全套都有什么| 心心念念是什么意思| 盗汗吃什么药效果最快| 为什么小便会带血| 淋巴肉为什么不能吃| 什么是中产阶级| 周莹是什么电视剧| 牵连是什么意思| 青蟹什么季节吃最好| 什么是尿素| 鹅口疮是什么引起的| 吃什么药可以延长射精| 舌头上火了吃什么降火| 吃什么蔬菜能降血脂| 胆囊结石不能吃什么| 闷葫芦是什么意思| 上午十点半是什么时辰| 看书有什么好处| 改名字需要什么手续| 新晋是什么意思| 医院为什么不推荐腹膜透析| 没有斗代表什么| foreplay是什么意思| 白化病是什么遗传| 发泥和发蜡有什么区别| 香蕉可以做什么美食| 查肺部挂什么科| dsa检查是什么意思| 多梦是什么原因造成的| 枫字五行属什么| 淋巴细胞偏高说明什么| 叶公好龙的好是什么意思| 冬阴功汤都放什么食材| 糖链抗原高是什么原因| 地包天什么意思| 硕的拼音是什么| pp是什么材料| 家慈是什么意思| 游园惊梦讲的是什么| 硬金是什么意思| 男性尿频尿急是什么原因| chick是什么意思| 晚上睡觉手麻木是什么原因| quake是什么意思| 泛是什么意思| 大爱什么意思| 香菇不能和什么一起吃| 成五行属性是什么| 葛根粉吃了有什么好处| 维生素c对身体有什么好处| 二次元是什么| 重塑是什么意思| 肌张力高吃什么药| 咳嗽有痰吃什么药效果好| 农历9月14日是什么星座| 双减是什么意思| 火加同念什么| 肾有结晶是什么意思| 第一次怀孕有什么反应| 砸是什么意思| 支原体培养及药敏是检查什么| 肺炎吃什么水果好| 什么地制宜| 松花粉有什么功效| 什么地方能出生入死| 木生什么| 什么是大专| 睡觉开风扇有什么危害| hpv16阳性有什么症状| ba是什么| 3月10日是什么星座| 喉软骨发育不良有什么症状| 什么样的野花| 小孩子包皮挂什么科| 五马分尸是什么意思| 负压是什么意思| 腿总是抽筋是什么原因| 有伤口吃什么消炎药| 尿白细胞弱阳性是什么意思| 脚麻木是什么原因| 散人是什么意思| 鼠标dpi是什么| 为什么孩子要跟爸爸姓| 家慈是对什么人的称呼| 什么是过敏性咳嗽| 梦见黄鼠狼是什么意思| uspa是什么牌子| 新生儿缺氧会有什么后遗症| 乌龟肠胃炎用什么药| 乐极生悲是什么意思| 艾滋病窗口期是什么意思| bmi是什么意思啊| 咳嗽吃什么药最好| 什么是光| 伟字五行属什么| 按摩头皮有什么好处| 后脑勺长白头发是什么原因| 寒是什么意思| 菜粥里面放什么菜最好| 什么人不宜吃海参| 总出汗是什么原因| 范思哲手表什么档次| 什么的草帽| 望尘莫及的及是什么意思| 痛经是什么引起的| 游丝是什么意思| 椁是什么意思| 湿热泄泻是什么意思| 松子吃多了有什么害处| 政法委是干什么的| 女宝胶囊的作用和功效是什么| 拉姆是什么意思| 拔罐后需要注意什么| 阿堵物是什么意思| 的确良是什么面料| 男生一般什么时候停止长高| 特朗普是什么星座| roa是什么胎位| 昶字五行属什么| 背痛是什么原因| 办理出院手续都需要什么| 办理健康证需要带什么| 粉红色泡沫样痰是什么病| 芒果像什么比喻句| 两个o型血能生出什么血型的孩子| 室间隔增厚是什么意思| 头皮脂溢性皮炎用什么药| 家里有蚂蚁是什么原因| 肾积水是什么意思| 拉杆是什么意思| 什么生木| 拌嘴是什么意思| 铁娘子是什么意思| 生物学父亲是什么意思| 端午节都吃什么菜好| 女人味是什么| 百度

市市政设施局开展文明施工和户外广告牌管...

百度 此时,68岁的赵孟頫已经因病请求致仕,还居家乡吴兴。

Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without considering "neighbouring" samples, a CRF can take context into account. To do so, the predictions are modelled as a graphical model, which represents the presence of dependencies between the predictions. The kind of graph used depends on the application. For example, in natural language processing, "linear chain" CRFs are popular, for which each prediction is dependent only on its immediate neighbours. In image processing, the graph typically connects locations to nearby and/or similar locations to enforce that they receive similar predictions.

Other examples where CRFs are used are: labeling or parsing of sequential data for natural language processing or biological sequences,[1] part-of-speech tagging, shallow parsing,[2] named entity recognition,[3] gene finding, peptide critical functional region finding,[4] and object recognition[5] and image segmentation in computer vision.[6]

Description

edit

CRFs are a type of discriminative undirected probabilistic graphical model.

Lafferty, McCallum and Pereira[1] define a CRF on observations   and random variables   as follows:

Let   be a graph such that  , so that   is indexed by the vertices of  .

Then   is a conditional random field when each random variable  , conditioned on  , obeys the Markov property with respect to the graph; that is, its probability is dependent only on its neighbours in G:

 , where   means that   and   are neighbors in  .

What this means is that a CRF is an undirected graphical model whose nodes can be divided into exactly two disjoint sets   and  , the observed and output variables, respectively; the conditional distribution   is then modeled.

Inference

edit

For general graphs, the problem of exact inference in CRFs is intractable. The inference problem for a CRF is basically the same as for an MRF and the same arguments hold.[7] However, there exist special cases for which exact inference is feasible:

  • If the graph is a chain or a tree, message passing algorithms yield exact solutions. The algorithms used in these cases are analogous to the forward-backward and Viterbi algorithm for the case of HMMs.
  • If the CRF only contains pair-wise potentials and the energy is submodular, combinatorial min cut/max flow algorithms yield exact solutions.

If exact inference is impossible, several algorithms can be used to obtain approximate solutions. These include:

Parameter learning

edit

Learning the parameters   is usually done by maximum likelihood learning for  . If all nodes have exponential family distributions and all nodes are observed during training, this optimization is convex.[7] It can be solved for example using gradient descent algorithms, or Quasi-Newton methods such as the L-BFGS algorithm. On the other hand, if some variables are unobserved, the inference problem has to be solved for these variables. Exact inference is intractable in general graphs, so approximations have to be used.

Examples

edit

In sequence modeling, the graph of interest is usually a chain graph. An input sequence of observed variables   represents a sequence of observations and   represents a hidden (or unknown) state variable that needs to be inferred given the observations. The   are structured to form a chain, with an edge between each   and  . As well as having a simple interpretation of the   as "labels" for each element in the input sequence, this layout admits efficient algorithms for:

  • model training, learning the conditional distributions between the   and feature functions from some corpus of training data.
  • decoding, determining the probability of a given label sequence   given  .
  • inference, determining the most likely label sequence   given  .

The conditional dependency of each   on   is defined through a fixed set of feature functions of the form  , which can be thought of as measurements on the input sequence that partially determine the likelihood of each possible value for  . The model assigns each feature a numerical weight and combines them to determine the probability of a certain value for  .

Linear-chain CRFs have many of the same applications as conceptually simpler hidden Markov models (HMMs), but relax certain assumptions about the input and output sequence distributions. An HMM can loosely be understood as a CRF with very specific feature functions that use constant probabilities to model state transitions and emissions. Conversely, a CRF can loosely be understood as a generalization of an HMM that makes the constant transition probabilities into arbitrary functions that vary across the positions in the sequence of hidden states, depending on the input sequence.

Notably, in contrast to HMMs, CRFs can contain any number of feature functions, the feature functions can inspect the entire input sequence   at any point during inference, and the range of the feature functions need not have a probabilistic interpretation.

Variants

edit

Higher-order CRFs and semi-Markov CRFs

edit

CRFs can be extended into higher order models by making each   dependent on a fixed number   of previous variables  . In conventional formulations of higher order CRFs, training and inference are only practical for small values of   (such as k ≤ 5),[8] since their computational cost increases exponentially with  .

However, another recent advance has managed to ameliorate these issues by leveraging concepts and tools from the field of Bayesian nonparametrics. Specifically, the CRF-infinity approach[9] constitutes a CRF-type model that is capable of learning infinitely-long temporal dynamics in a scalable fashion. This is effected by introducing a novel potential function for CRFs that is based on the Sequence Memoizer (SM), a nonparametric Bayesian model for learning infinitely-long dynamics in sequential observations.[10] To render such a model computationally tractable, CRF-infinity employs a mean-field approximation[11] of the postulated novel potential functions (which are driven by an SM). This allows for devising efficient approximate training and inference algorithms for the model, without undermining its capability to capture and model temporal dependencies of arbitrary length.

There exists another generalization of CRFs, the semi-Markov conditional random field (semi-CRF), which models variable-length segmentations of the label sequence  .[12] This provides much of the power of higher-order CRFs to model long-range dependencies of the  , at a reasonable computational cost.

Finally, large-margin models for structured prediction, such as the structured Support Vector Machine can be seen as an alternative training procedure to CRFs.

Latent-dynamic conditional random field

edit

Latent-dynamic conditional random fields (LDCRF) or discriminative probabilistic latent variable models (DPLVM) are a type of CRFs for sequence tagging tasks. They are latent variable models that are trained discriminatively.

In an LDCRF, like in any sequence tagging task, given a sequence of observations x =  , the main problem the model must solve is how to assign a sequence of labels y =   from one finite set of labels Y. Instead of directly modeling P(y|x) as an ordinary linear-chain CRF would do, a set of latent variables h is "inserted" between x and y using the chain rule of probability:[13]

 

This allows capturing latent structure between the observations and labels.[14] While LDCRFs can be trained using quasi-Newton methods, a specialized version of the perceptron algorithm called the latent-variable perceptron has been developed for them as well, based on Collins' structured perceptron algorithm.[13] These models find applications in computer vision, specifically gesture recognition from video streams[14] and shallow parsing.[13]

See also

edit

References

edit
  1. ^ a b Lafferty, J.; McCallum, A.; Pereira, F. (2001). "Conditional random fields: Probabilistic models for segmenting and labeling sequence data". Proc. 18th International Conf. on Machine Learning. Morgan Kaufmann. pp. 282–289.
  2. ^ Sha, F.; Pereira, F. (2003). shallow parsing with conditional random fields.
  3. ^ Settles, B. (2004). "Biomedical named entity recognition using conditional random fields and rich feature sets" (PDF). Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications. pp. 104–107.
  4. ^ Chang KY; Lin T-p; Shih L-Y; Wang C-K (2015). "Analysis and Prediction of the Critical Regions of Antimicrobial Peptides Based on Conditional Random Fields". PLOS ONE. 10 (3): e0119490. Bibcode:2015PLoSO..1019490C. doi:10.1371/journal.pone.0119490. PMC 4372350. PMID 25803302.
  5. ^ J.R. Ruiz-Sarmiento; C. Galindo; J. Gonzalez-Jimenez (2015). "UPGMpp: a Software Library for Contextual Object Recognition.". 3rd. Workshop on Recognition and Action for Scene Understanding (REACTS).
  6. ^ He, X.; Zemel, R.S.; Carreira-Perpin?án, M.A. (2004). "Multiscale conditional random fields for image labeling". IEEE Computer Society. CiteSeerX 10.1.1.3.7826.
  7. ^ a b Sutton, Charles; McCallum, Andrew (2010). "An Introduction to Conditional Random Fields". arXiv:1011.4088v1 [stat.ML].
  8. ^ Lavergne, Thomas; Yvon, Fran?ois (September 7, 2017). "Learning the Structure of Variable-Order CRFs: a Finite-State Perspective". Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark: Association for Computational Linguistics. p. 433.
  9. ^ Chatzis, Sotirios; Demiris, Yiannis (2013). "The Infinite-Order Conditional Random Field Model for Sequential Data Modeling". IEEE Transactions on Pattern Analysis and Machine Intelligence. 35 (6): 1523–1534. doi:10.1109/tpami.2012.208. hdl:10044/1/12614. PMID 23599063. S2CID 690627.
  10. ^ Gasthaus, Jan; Teh, Yee Whye (2010). "Improvements to the Sequence Memoizer" (PDF). Proc. NIPS.
  11. ^ Celeux, G.; Forbes, F.; Peyrard, N. (2003). "EM Procedures Using Mean Field-Like Approximations for Markov Model-Based Image Segmentation". Pattern Recognition. 36 (1): 131–144. Bibcode:2003PatRe..36..131C. CiteSeerX 10.1.1.6.9064. doi:10.1016/s0031-3203(02)00027-4.
  12. ^ Sarawagi, Sunita; Cohen, William W. (2005). "Semi-Markov conditional random fields for information extraction". In Lawrence K. Saul; Yair Weiss; Léon Bottou (eds.). Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press. pp. 1185–1192. Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.
  13. ^ a b c Xu Sun; Takuya Matsuzaki; Daisuke Okanohara; Jun'ichi Tsujii (2009). Latent Variable Perceptron Algorithm for Structured Classification. IJCAI. pp. 1236–1242. Archived from the original on 2025-08-05. Retrieved 2025-08-05.
  14. ^ a b Morency, L. P.; Quattoni, A.; Darrell, T. (2007). "Latent-Dynamic Discriminative Models for Continuous Gesture Recognition" (PDF). 2007 IEEE Conference on Computer Vision and Pattern Recognition. p. 1. CiteSeerX 10.1.1.420.6836. doi:10.1109/CVPR.2007.383299. ISBN 978-1-4244-1179-5. S2CID 7117722.

Further reading

edit
  • McCallum, A.: Efficiently inducing features of conditional random fields. In: Proc. 19th Conference on Uncertainty in Artificial Intelligence. (2003)
  • Wallach, H.M.: Conditional random fields: An introduction. Technical report MS-CIS-04-21, University of Pennsylvania (2004)
  • Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for Relational Learning. In "Introduction to Statistical Relational Learning". Edited by Lise Getoor and Ben Taskar. MIT Press. (2006) Online PDF
  • Klinger, R., Tomanek, K.: Classical Probabilistic Models and Conditional Random Fields. Algorithm Engineering Report TR07-2-013, Department of Computer Science, Dortmund University of Technology, December 2007. ISSN 1864-4503. Online PDF
陆陆续续是什么意思 颈椎不舒服挂什么科 死马当活马医是什么意思 699是什么意思 属马的贵人属相是什么
眼袋青色什么原因 马铃薯是什么 hp是什么单位 吃什么吐什么喝水都吐怎么办 屁股痛是什么原因
心肌缺血有什么症状和表现 左耳朵发热代表什么预兆 芹菜煮水喝有什么功效 什么的后羿 魁罡贵人是什么意思
孕吐一般从什么时候开始 水瓶座是什么象星座 胳膊肘疼痛是什么原因 过期的洗面奶可以用来做什么 梦见自己大笑是什么意思
痛风什么药止痛最快hcv7jop5ns0r.cn 蜂蜜跟什么不能一起吃hcv8jop1ns1r.cn 女人30如狼40如虎是什么意思hcv9jop7ns5r.cn 保外就医是什么意思hcv8jop6ns5r.cn 吃什么油对心脑血管好hcv7jop5ns3r.cn
无创低风险是什么意思xianpinbao.com 什么蜂蜜最好hcv8jop0ns1r.cn 四月十八是什么星座hcv9jop3ns1r.cn 气炎念什么naasee.com 蔻驰和古驰有什么区别hcv9jop3ns7r.cn
新百伦属于什么档次travellingsim.com 全身抽筋吃什么药hcv7jop9ns5r.cn 礼五行属什么hcv9jop2ns1r.cn 月经不正常吃什么药wzqsfys.com 什么东西越剪越大hcv8jop7ns5r.cn
呦西是什么意思hcv9jop0ns2r.cn 先天性一个肾对人有什么影响hcv7jop6ns2r.cn 吃什么东西下火hcv8jop6ns6r.cn 结核抗体弱阳性什么意思hcv8jop9ns6r.cn 流加金念什么hcv8jop0ns7r.cn
百度