什么药可以延长射精| 橘红是什么| 尿频尿急尿不尽吃什么药效果最好| 香奈儿属于什么档次| rdw是什么意思| 北京有什么好玩的地方| 葡萄是什么季节的水果| 婴儿流口水是什么原因引起的| 乳腺增生样改变是什么意思| 励志是什么意思| 糖醇是什么意思| 梦见移坟墓是什么预兆| diy什么意思| 心脏积液吃什么药最好| 看男科挂什么门诊| 低血糖是什么引起的| 纯牛奶什么时候喝最好| mas是什么意思| 4.22是什么星座| 长期喝蜂蜜有什么好处| 颞下颌关节紊乱挂什么科| 五朵玫瑰花代表什么意思| 什么是动态心电图| 寒食节是什么意思| 肠系膜淋巴结炎吃什么药最有效| 甲状腺功能亢进是什么意思| 心慌什么感觉| male是什么意思| 脚底板发热是什么原因| 三焦热盛是什么意思| 为什么眉毛会白| 碳13和碳14有什么区别| 藜芦是什么| 南方有什么生肖| lena是什么意思| 龙根是什么| 新百伦属于什么档次| 老年人睡眠多是什么原因| 阴茎供血不足吃什么药| 龚自珍是什么朝代的| 氧分压低是什么原因| 抽血生化是查什么| 脚后跟疼用什么药最好| 黑绿色大便是什么原因| 今年是什么年号| 什么叫市级以上医院| 吃什么容易结石| 贫血是什么原因引起的| 巨蟹什么象星座| 精华液是干什么用的| min是什么意思| 人造石是什么材料做的| 什么的神色| 停滞是什么意思| 阴道炎用什么药| 世交是什么意思| 瓜子脸适合剪什么发型| 剁椒是什么辣椒| 什么茶叶好喝| 右肾结晶是什么意思| 比熊吃什么牌子的狗粮好| 右肾肾盂分离什么意思| 硬盘是什么意思| 马云是什么大学毕业的| 扬州有什么特产| 户籍地址是什么意思| 波澜壮阔是什么意思| 肺炎支原体感染吃什么药| 长痘吃什么水果好| 心率过快挂什么科| 白手套是什么意思| 凤凰花什么时候开| 李志为什么| 细水长流是什么意思| 七星瓢虫吃什么| 很low是什么意思| 为什么月经迟迟不来又没怀孕| 孕妇适合喝什么牛奶| 爸爸的爸爸的爸爸叫什么| 尿等待吃什么药最好| 什么花花| 眼屎多用什么眼药水| buy是什么意思| 今年什么时候暑伏| 梦见看电影是什么意思| 过房是什么意思| 窦性心动过缓什么意思| 姑奶奶是什么意思| 血管造影是什么检查| 什么的小花| gold是什么意思| 就读是什么意思| 桃花依旧笑春风什么意思| 今天突然拉稀拉出血什么原因| 子宫息肉是什么| 提前来大姨妈是什么原因| 慢性鼻窦炎吃什么药| 598分能上什么大学| 做脑ct对人体有什么危害| 手上长水泡痒用什么药| 消化道出血有什么症状| 蘑菇和什么不能一起吃| 心里害怕紧张恐惧是什么症状| 寒露是什么季节| 喝酒手掌发红是什么原因| 什么石头最值钱| 炎性增殖灶是什么意思| 什么是援交| 屁股长痘是什么原因| 来例假能吃什么水果| 淀粉酶是查什么的| 藏拙是什么意思| hpv病毒是什么病| 1985年牛五行属什么| 多囊有什么症状| st是什么意思| 道心是什么意思| 人走茶凉下一句是什么| 物业费都包括什么服务| 孩子是什么意思| 月令是什么意思| 什么鱼| 什么网站| 衣冠禽兽指什么生肖| 顾名思义的顾是什么意思| 女生腰疼是什么原因| 水瓶座是什么性格| 吃纳豆有什么好处| 左眼跳是什么预兆| 我宣你 是什么意思| 耳鸣吃什么药好| 势利眼的人有什么特征| 采耳是什么| 身上为什么会起湿疹| 山莨菪碱为什么叫6542| 野是什么意思| 太燃了是什么意思| 鲶鱼吃什么| 2017年是属什么年| 外耳道耵聍什么意思| 精索是什么| 光感是什么意思| 尿常规粘液丝高是什么意思| 淘米水洗脸有什么好处| 叶子为什么是绿色的| 谷草谷丙偏高是什么原因| 腰肌劳损是什么原因引起的| 催乳素过高会有什么严重的后果| 月蚀是什么意思| 肌酐高是什么引起的| 甲骨文是写在什么上面的| mfd是什么意思| 男人早泄吃什么药最好| 皮下男是什么意思| 梦到镯子碎了什么预兆| 肚子胀气吃什么药好| 毕业是什么意思| 性格内敛是什么意思| 拉烂屎是什么原因| 11月18日是什么星座| 钠低是什么原因| 淋巴用什么药可以消除| 做梦梦到搬家什么意思| 小猫咪能吃什么| 蛇是什么动物| 柴鸡是什么鸡| 白膜是什么东西| 渡船是什么意思| 尿路感染是什么原因造成的| 日语亚麻得是什么意思| 什么是紫癜| 长期咳嗽是什么原因| 橡皮擦是什么材料做的| 梦见手机屏幕摔碎了是什么意思| 用盐刷牙有什么好处和坏处| 为什么手心总是出汗| 减持是什么意思| 什么是肾阴虚| 拉屎肛门疼是什么原因| 女性睾酮低说明什么| 手上的月牙代表什么意思| 空气缸是什么意思| 过年吃什么| 碘伏用什么可以洗掉| 什么植物和动物最像鸡| 长期做梦是什么原因| 做梦梦见钓鱼是什么意思| exo什么意思| 塞翁失马是什么生肖| 宋美龄为什么没有孩子| 水粉是什么| 异常什么意思| 3p 什么意思| 避孕套长什么样| 多囊吃什么药| 一金有什么用| 胎膜是什么| 眼睛里有红血丝是什么原因| 芒果跟什么不能一起吃| 摩羯座女和什么座最配| 屋上土是什么意思| 沉鱼落雁什么意思| 精神出轨是什么意思| 张家界莓茶有什么功效| 籽料是什么意思| 夫妻合葬有什么讲究| 牛郎是什么意思| 什么是化合物| 褪黑素什么时候吃| 什么的窟窿| 睡醒后腰疼是什么原因| 刺身是什么意思| 车前草治什么病最好| 拿什么证明分居两年| 去医院查怀孕挂什么科| 男人吃西红柿有什么好处| 自刎是什么意思| 黄水疮用什么药膏最快| 喝黄芪水有什么好处| 昆明飞机场叫什么名字| 安全监察是一种带有什么的监督| 顾虑是什么意思| 嘴苦吃什么药| 子宫痉挛是什么症状| 纤支镜主要检查什么| 女龙配什么属相最好| 非文念什么| 手脚发抖是什么原因引起的| 拔牙之后吃什么消炎药| 血虚肝旺有什么症状有哪些| 宫颈纳囊多发是什么意思| 头晕吃什么药| tbs和tct有什么区别| 螃蟹不能和什么水果一起吃| 什么是激光| 孕反应最早什么时候开始| 恙是什么意思| 什么品牌的卫浴好| 尿痛吃什么药效果最好| 维酶素片搭配什么药治萎缩性胃炎| 天伦之乐是什么意思啊| 四川地震前有什么预兆| 酒品是什么意思| 口干舌燥口苦吃什么药| 凌寒独自开的凌是什么意思| 大步向前走永远不回头是什么歌| 尿白细胞3十什么意思| 猫的胡子有什么作用| 车厘子什么季节吃| 戴珍珠手链有什么好处| 梦见什么是受孕成功了| 借什么可以不还| 张郃字什么| 灵官爷是什么神| 闰月给父母买什么| upupup是什么意思| 淋巴细胞比率偏高是什么原因| honor是什么牌子的手机| 肿瘤切开了里面是什么| 态度是什么| 什么是托特包| 闰月是什么意思| 三氯蔗糖是什么东西| 医保断了一个月有什么影响| 百度

女性顶了移动支付市场半边天,并存在继续扩张的可能

百度 中国浦东、井冈山、延安干部学院学员通过视频会议系统同步参加开学典礼。

Discriminative models, also referred to as conditional models, are a class of models frequently used for classification. They are typically used to solve binary classification problems, i.e. assign labels, such as pass/fail, win/lose, alive/dead or healthy/sick, to existing datapoints.

Types of discriminative models include logistic regression (LR), conditional random fields (CRFs), decision trees among many others. Generative model approaches which uses a joint probability distribution instead, include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.

Definition

edit

Unlike generative modelling, which studies the joint probability  , discriminative modeling studies the   or maps the given unobserved variable (target)   to a class label   dependent on the observed variables (training samples). For example, in object recognition,   is likely to be a vector of raw pixels (or features extracted from the raw pixels of the image). Within a probabilistic framework, this is done by modeling the conditional probability distribution  , which can be used for predicting   from  . Note that there is still distinction between the conditional model and the discriminative model, though more often they are simply categorised as discriminative model.

Pure discriminative model vs. conditional model

edit

A conditional model models the conditional probability distribution, while the traditional discriminative model aims to optimize on mapping the input around the most similar trained samples.[1]

Typical discriminative modelling approaches

edit

The following approach is based on the assumption that it is given the training data-set  , where   is the corresponding output for the input  .[2]

Linear classifier

edit

We intend to use the function   to simulate the behavior of what we observed from the training data-set by the linear classifier method. Using the joint feature vector  , the decision function is defined as:

 

According to Memisevic's interpretation,[2]  , which is also  , computes a score which measures the compatibility of the input   with the potential output  . Then the   determines the class with the highest score.

Logistic regression (LR)

edit

Since the 0-1 loss function is a commonly used one in the decision theory, the conditional probability distribution  , where   is a parameter vector for optimizing the training data, could be reconsidered as following for the logistics regression model:

 , with
 

The equation above represents logistic regression. Notice that a major distinction between models is their way of introducing posterior probability. Posterior probability is inferred from the parametric model. We then can maximize the parameter by following equation:

 

It could also be replaced by the log-loss equation below:

 

Since the log-loss is differentiable, a gradient-based method can be used to optimize the model. A global optimum is guaranteed because the objective function is convex. The gradient of log likelihood is represented by:

 

where   is the expectation of  .

The above method will provide efficient computation for the relative small number of classification.

Contrast with generative model

edit

Contrast in approaches

edit

Let's say we are given the   class labels (classification) and   feature variables,  , as the training samples.

A generative model takes the joint probability  , where   is the input and   is the label, and predicts the most possible known label   for the unknown variable   using Bayes' theorem.[3]

Discriminative models, as opposed to generative models, do not allow one to generate samples from the joint distribution of observed and target variables. However, for tasks such as classification and regression that do not require the joint distribution, discriminative models can yield superior performance (in part because they have fewer variables to compute).[4][5][3] On the other hand, generative models are typically more flexible than discriminative models in expressing dependencies in complex learning tasks. In addition, most discriminative models are inherently supervised and cannot easily support unsupervised learning. Application-specific details ultimately dictate the suitability of selecting a discriminative versus generative model.

Discriminative models and generative models also differ in introducing the posterior possibility.[6] To maintain the least expected loss, the minimization of result's misclassification should be acquired. In the discriminative model, the posterior probabilities,  , is inferred from a parametric model, where the parameters come from the training data. Points of estimation of the parameters are obtained from the maximization of likelihood or distribution computation over the parameters. On the other hand, considering that the generative models focus on the joint probability, the class posterior possibility   is considered in Bayes' theorem, which is

 .[6]

Advantages and disadvantages in application

edit

In the repeated experiments, logistic regression and naive Bayes are applied here for different models on binary classification task, discriminative learning results in lower asymptotic errors, while generative one results in higher asymptotic errors faster.[3] However, in Ulusoy and Bishop's joint work, Comparison of Generative and Discriminative Techniques for Object Detection and Classification, they state that the above statement is true only when the model is the appropriate one for data (i.e.the data distribution is correctly modeled by the generative model).

Advantages

edit

Significant advantages of using discriminative modeling are:

  • Higher accuracy, which mostly leads to better learning result.
  • Allows simplification of the input and provides a direct approach to  
  • Saves calculation resource
  • Generates lower asymptotic errors

Compared with the advantages of using generative modeling:

  • Takes all data into consideration, which could result in slower processing as a disadvantage
  • Requires fewer training samples
  • A flexible framework that could easily cooperate with other needs of the application

Disadvantages

edit
  • Training method usually requires multiple numerical optimization techniques[1]
  • Similarly by the definition, the discriminative model will need the combination of multiple subtasks for solving a complex real-world problem[2]

Optimizations in applications

edit

Since both advantages and disadvantages present on the two way of modeling, combining both approaches will be a good modeling in practice. For example, in Marras' article A Joint Discriminative Generative Model for Deformable Model Construction and Classification,[7] he and his coauthors apply the combination of two modelings on face classification of the models, and receive a higher accuracy than the traditional approach.

Similarly, Kelm[8] also proposed the combination of two modelings for pixel classification in his article Combining Generative and Discriminative Methods for Pixel Classification with Multi-Conditional Learning.

During the process of extracting the discriminative features prior to the clustering, Principal component analysis (PCA), though commonly used, is not a necessarily discriminative approach. In contrast, LDA is a discriminative one.[9] Linear discriminant analysis (LDA), provides an efficient way of eliminating the disadvantage we list above. As we know, the discriminative model needs a combination of multiple subtasks before classification, and LDA provides appropriate solution towards this problem by reducing dimension.

Types

edit

Examples of discriminative models include:

See also

edit

References

edit
  1. ^ a b Ballesteros, Miguel. "Discriminative Models" (PDF). Retrieved October 28, 2018.[permanent dead link]
  2. ^ a b c Memisevic, Roland (December 21, 2006). "An introduction to structured discriminative learning". Retrieved October 29, 2018.
  3. ^ a b c Ng, Andrew Y.; Jordan, Michael I. (2001). On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes (PDF).
  4. ^ Singla, Parag; Domingos, Pedro (2005). "Discriminative Training of Markov Logic Networks". Proceedings of the 20th National Conference on Artificial Intelligence - Volume 2. AAAI'05. Pittsburgh, Pennsylvania: AAAI Press: 868–873. ISBN 978-1577352365.
  5. ^ J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In ICML, 2001.
  6. ^ a b Ulusoy, Ilkay (May 2016). "Comparison of Generative and Discriminative Techniques for Object Detection and Classification" (PDF). Microsoft. Retrieved October 30, 2018.
  7. ^ Marras, Ioannis (2017). "A Joint Discriminative Generative Model for Deformable Model Construction and Classification" (PDF). Retrieved 5 November 2018.
  8. ^ Kelm, B. Michael. "Combining Generative and Discriminative Methods for Pixel Classification with Multi-Conditional Learning" (PDF). Archived from the original (PDF) on 17 July 2019. Retrieved 5 November 2018.
  9. ^ Wang, Zhangyang (2015). "A Joint Optimization Framework of Sparse Coding and Discriminative Clustering" (PDF). Retrieved 5 November 2018.
什么东西养胃 蟋蟀吃什么东西 斑秃用什么药 2月出生是什么星座 吃什么可以长头发
黄水疮是什么原因引起的 波奇饭是什么意思 233是什么意思啊 notebook是什么意思 ca199是什么意思
胃疼肚子疼是什么原因 蛋白粉有什么功效 自律是什么意思 保教费是什么意思 退休工资什么时候补发
利而不害为而不争是什么意思 滑板鞋是什么鞋 海带和什么菜搭配好吃 mh是什么单位 烛光晚餐是什么意思
微光是什么意思xjhesheng.com 甘油三酯高会引起什么病hcv8jop5ns8r.cn 煤气罐为什么会爆炸hcv7jop9ns4r.cn 乌豆是什么hcv8jop4ns6r.cn 野格是什么酒hcv8jop8ns8r.cn
七六年属什么生肖hcv8jop1ns0r.cn 月经期间不能吃什么水果hcv9jop0ns4r.cn 早上起来嘴巴发苦是什么原因hcv9jop1ns9r.cn 都有什么血型hcv9jop8ns2r.cn 梦到老公出轨是什么意思hcv9jop6ns4r.cn
皮皮虾吃什么hcv8jop8ns2r.cn 维生素b9是什么1949doufunao.com 92年1月属什么生肖hcv7jop5ns5r.cn 杵状指常见于什么病hcv9jop3ns2r.cn 10月底是什么星座hcv9jop6ns1r.cn
哀怨是什么意思hcv9jop6ns1r.cn 化疗期间吃什么hcv9jop4ns4r.cn 肠道胀气是什么原因造成的weuuu.com 谷草谷丙偏高是什么原因hcv7jop5ns5r.cn 小便尿起泡是什么原因hcv9jop6ns7r.cn
百度